
The Hoffman Tutorial

Brent Baccala

December 23, 2015

Hoffman is a program to solve chess endgames using retrograde analysis. A retrograde analysis program is much different

from a conventional computer chess programs. Retrograde analysis is only useful in the endgame, runs very slowly, and

produces enormous amounts of data. Its great advantage lies in its ability to completely solve the endgame. In a very

real sense, a retrograde engine has no “move horizon” like a conventional chess engine. It sees everything. For those not

up on Americana, the program is named after Trevor Hoffman, an All Star baseball pitcher who specializes in “closing”

games. It was written specifically for The World vs. Arno Nickel game.

The first thing to understand is that Hoffman uses XML control files to govern its operation. Hoffman comes with an

xml directory containing a number of these control files. I’ll illustrate how Hoffman works using these examples. For

example, Figure 1 shows about the simplest possible XML control file, for the king vs. king endgame, contained in the

file xml/kk.xml.

What does this all mean? Well, the first two lines identify this as a Hoffman XML tablebase file; copy them verbatim

at the top of any new Hoffman control file. The third line illustrates XML’s comment format; anything between <!--

and --> is a comment, in this case the identity of the Perl script that created this file. The bulk of the file is contained

between the two lines <tablebase> and </tablebase>. tablebase is a simple example of an XML element,

which come in basically two flavors: the simple kind and the complex kind. The simple kind, like, say, piece, have only

a single tag that ends with a slash. The complex kind have both a beginning and an ending tag. The beginning tag does

not have a slash, and the ending tag is identical to the beginning tag except that it starts with a slash (like tablebase).

Complex elements allow you to put things between the starting and ending tags. Follow my lead; it’ll start to make sense

soon.

The piece elements are probably self-explanatory. Notice that I didn’t specify where on the board the kings were.

That’s because we’re going to compute results for every chess position possible with these two pieces. Their movements

are completely unrestricted — they can be anywhere on the board. Later we’ll see more complex piece elements that

restrict where on the board the pieces can be.

Finally, we come to output, which tells the program where to put the output tablebase, in this case, into a file called

<?xml version="1.0"?>

<!DOCTYPE tablebase SYSTEM "http://www.freesoft.org/software/hoffman/tablebase.dtd">

<!-- Created by genctlfile.pl -->

<tablebase>

<piece color="white" type="king"/>

<piece color="black" type="king"/>

<output filename="kk.htb"/>

</tablebase>

Figure 1: kk.xml

<?xml version="1.0"?>

<!DOCTYPE tablebase SYSTEM "http://www.freesoft.org/software/hoffman/tablebase.dtd">

<!-- Created by genctlfile.pl -->

<tablebase>

<piece color="white" type="king"/>

<piece color="black" type="king"/>

<piece color="white" type="queen"/>

<futurebase filename="kk.htb"/>

<output filename ="kqk.htb"/>

</tablebase>

Figure 2: kqk.xml

kk.htb. You can rename the resulting tablebase file as you wish; the tablebase isn’t tied to a particular filename.

Now you put all this into a file called something like kk.xml, (or just copy it from the xml directory) and run Hoffman

like this:

C> hoffman -g kk.xml

Initializing tablebase

Checking futuremoves...

All futuremoves handled under move restrictions

Intra-table propagating

Pass 0 complete; 840 positions processed

Pass 1 complete; 0 positions processed

C>

There isn’t much to see, of course. The “-g” option meant “generate”. King vs king is nothing more than figuring out the

difference between illegal positions and draws. But this information is important, because it’s needed to back propagate

from the (slightly) more complex three piece endgames, like the king and queen endgame whose XML configuration is

shown in Figure 2.

Notice the new “futurebase” line. This tells Hoffman where to get the information about what happens when the black

king can capture the white queen, because a tablebase contains information for exactly the piece configuration it is set up

for — nothing more, nothing less.

So put all this in a file called kqk.xml, make sure the kk.htb file from the first run is present, and run Hoffman again:

C> ./hoffman -g -o kqk.htb kqk.xml

Initializing tablebase

Back propagating from ’kk.htb’

Checking futuremoves...

All futuremoves handled under move restrictions

Intra-table propagating

Pass 0 complete; 131516 positions processed

Pass 1 complete; 364 positions processed

Pass 2 complete; 2448 positions processed

Pass 3 complete; 1352 positions processed

Pass 4 complete; 5012 positions processed

Pass 5 complete; 2956 positions processed

Pass 6 complete; 9064 positions processed

Pass 7 complete; 7480 positions processed

Pass 8 complete; 19964 positions processed

Pass 9 complete; 14144 positions processed

Pass 10 complete; 26164 positions processed

Pass 11 complete; 25484 positions processed

Pass 12 complete; 32064 positions processed

Pass 13 complete; 39908 positions processed

Pass 14 complete; 32104 positions processed

Pass 15 complete; 54052 positions processed

Pass 16 complete; 15000 positions processed

Pass 17 complete; 43800 positions processed

Pass 18 complete; 2680 positions processed

Pass 19 complete; 11300 positions processed

Pass 20 complete; 8 positions processed

Pass 21 complete; 56 positions processed

Pass 22 complete; 0 positions processed

C>

See, it’s a little more interesting this time, right?

Now is a good time to introduce the “-i” (information) option. Once you’ve got a bunch of .htb files sitting around, and

you can’t remember which XML control file was used to generate which tablebase, there’s no need to panic. Everything

from the original XML configuration is saved into the resulting tablebase, along with a bunch more information, and all

of it can be retrieved from the tablebase using -i:

C> hoffman -i kqk.htb

Hoffman $Revision: 1.16 $ $Locker: $

0 piece Nalimov tablebases found

<?xml version="1.0"?>

<!DOCTYPE tablebase SYSTEM "http://www.freesoft.org/software/hoffman/tablebase.dtd">

<tablebase offset="0x0fe4">

<index type="compact" symmetry="8-way"/>

<format><dtm bits="8"/></format>

<piece color="white" type="king"/>

<piece color="black" type="king"/>

<piece color="white" type="queen"/>

<futurebase filename="kk.htb"/>

<tablebase-statistics>

<indices>59136</indices>

<PNTM-mated-positions>10152</PNTM-mated-positions>

<legal-positions>47136</legal-positions>

<stalemate-positions>115</stalemate-positions>

<white-wins-positions>44183</white-wins-positions>

<black-wins-positions>0</black-wins-positions>

<forward-moves>686465</forward-moves>

<futuremoves>2838</futuremoves>

<max-dtm>11</max-dtm>

<min-dtm>-11</min-dtm>

</tablebase-statistics>

<generation-statistics>

<?xml version="1.0"?>

<!DOCTYPE tablebase SYSTEM "http://www.freesoft.org/software/hoffman/tablebase.dtd">

<!-- Created by genctlfile.pl -->

<tablebase>

<piece color="white" type="king"/>

<piece color="black" type="king"/>

<piece color="white" type="pawn"/>

<futurebase filename="kk.htb"/>

<futurebase filename="kqk.htb"/>

<futurebase filename="krk.htb"/>

<futurebase filename="kbk.htb"/>

<futurebase filename="knk.htb"/>

<output filename ="kpk.htb"/>

</tablebase>

Figure 3: kpk.xml

<host>debian.freesoft.org</host>

<program>Hoffman $Revision: 1.16 $ $Locker: $</program>

<args>./hoffman -g -o kqk.htb kqk.xml </args>

<start-time>Sat Dec 16 02:11:28 2006 EST</start-time>

<completion-time>Sat Dec 16 02:11:36 2006 EST</completion-time>

<user-time>2.782s</user-time>

<system-time>0.018s</system-time>

<real-time>8.052s</real-time>

... about 60 more lines deleted ...

</generation-statistics>

</tablebase>

We see the configuration information from the input XML file, plus a lot more information added by the program. We

see the encoding scheme used to number the board positions (the index element), the type of information stored for

each position (the dtm element – Distance To Mate), as well as two entire new sections — tablebase-statistics

and generation-statistics. The first reports various interesting information the program determined about the

tablebase, such as how many total indices there are, how many correspond to legal chess positions, how many white

mates, or black mates, or stalemates there are, etc. The second reports information about the actual generation of this

tablebase, like when it occured, which version of the program was used, and which computer actually computed it.

OK, so what’s next? After kk.xml and kqk.xml, then you can easily understand krk.xml, kbk.xml and knk.xml.

Once all five of these are processed, you’re now ready to build kpk.xml (Figure 3).

Notice we’ve added a new type of futurebase — pawn promotion. Hoffman has to know what happens after that

pawn transforms into a queen, rook, bishop, or knight to be able to understand what happens to the pawn!

It’s starting to get more complex, right? So how do I know there isn’t a bug in all of this complexity? Well, my most

important blunder check is to verify the program’s operation against the Nalimov tablebases. You can do this, too. If

you download the appropriate Nalimov tablebases from the Internet (in this case, the two KPK files), you can verify

that Hoffman’s results are identical to Nalimov’s using the “-v” (verify) and “-n directory” (location of Nalimov files)

options, like this:

<?xml version="1.0"?>

<!DOCTYPE tablebase SYSTEM "http://www.freesoft.org/software/hoffman/tablebase.dtd">

<!-- Created by genctlfile.pl -->

<tablebase>

<piece color="white" type="king"/>

<piece color="black" type="king"/>

<piece color="white" type="queen"/>

<piece color="black" type="queen"/>

<futurebase filename="kqk.htb" colors="invert"/>

<futurebase filename="kqk.htb"/>

<output filename ="kqkq.htb"/>

</tablebase>

Figure 4: kqkq.xml

C> ./hoffman -v -n Nalimov/ kpk.htb

Hoffman $Revision: 1.16 $ $Locker: $

5 piece Nalimov tablebases found

Loading ’kpk.htb’

Verifying tablebase against Nalimov

C>

There were no complaints, so that means everything verified OK.

So now you’ve got all of the three piece tablebases. Ready to try a four piece? Figure 4 is kqkq.xml.

Notice several things. First, we no longer specify kk.htb as a futurebase. We’re only interested in the single captures

that lead out of the tablebase we’re building. kk.htb has already been used to build kqk.htb, so its data is in there.

Two queens can’t be taken on a single move, so all we need to worry about is what happens if one of them is captured.

That’s why I use the kqk.htb tablebase. Notice that I use it twice, depending on which queen is being captured. The

kqk.htb tablebase has a white queen in it, and the colors="invert" option to the futurebase element handles

the case where the white queen is captured and we’re left with a black queen on the board.

You’ll notice also that a four piece tablebase takes a good bit longer to compute than a three piece one.

Oh, and I suppose having generating all of these tablebases, you now want to query them, huh?

You do that using the probe (-p) option, followed by a list of tablebases. Since we’ve got a small collection of simple

tablebases, it’s easiest to just load them all, like this:

C> ./hoffman -p *.htb

4 piece Nalimov tablebases found

Loading ’kk.htb’

Loading ’knk.htb’

Loading ’knkn.htb’

Loading ’knkp.htb’

Loading ’kpk.htb’

Loading ’kpkp.htb’

Loading ’kpkq.htb’

Loading ’kqk.htb’

Loading ’kqkn.htb’

Loading ’kqkp.htb’

Loading ’kqkq.htb’

Loading ’kqkr.htb’

Loading ’krk.htb’

Loading ’krkn.htb’

Loading ’krkp.htb’

Loading ’krkr.htb’

FEN? 8/8/8/8/p7/8/1P4k1/2K5 b

FEN 8/8/8/8/p7/8/1P4k1/2K5 b - -

Index 12658437

Draw

Nalimov score: DRAW

g2h2 White moves and wins in 22

g2f2 White moves and wins in 25

g2g3 White moves and wins in 25

g2g1 White moves and wins in 25

g2f3 Draw

g2h3 White moves and wins in 22

g2f1 White moves and wins in 25

g2h1 White moves and wins in 21

a4a3 White moves and wins in 16

FEN or move? g2f3

FEN 8/8/8/8/p7/5k2/1P6/2K5 w - -

Index 12659332

Draw

Nalimov score: DRAW

c1d1 Draw

c1b1 Draw

c1c2 Draw

c1d2 Draw

b2b3 Draw

b2b4 Draw

FEN or move? b2b4

FEN 8/8/8/8/pP6/5k2/8/2K5 b - b3

Index 12593797

Draw

Nalimov score: DRAW

f3g3 White moves and wins in 15

f3e3 White moves and wins in 15

f3f4 White moves and wins in 23

f3f2 White moves and wins in 15

f3e4 Draw

f3g4 White moves and wins in 15

f3e2 White moves and wins in 15

f3g2 White moves and wins in 15

a4xb3 Draw

FEN or move?

baccala@debian ˜/src/endgame$

At the “FEN?” prompt you want to enter a chess position in FEN notation (you can leave off the castling rights and

en passant square if you want). The program spits back its evaluation of the position (if it has one), along with a list

of moves and how they evaluate. It has a history feature, so once you’ve typed a FEN position in once, if you end the

program with a CNTL-D and not a CNTL-C, it will save everything to a history file, and you can retrieve it again on a

later run using the up arrow key.

After you’ve put a FEN position in, you get a “FEN or move?” prompt, which allows you to enter moves and thus step

forward in the game. The move parser isn’t very smart right now; you can make illegal moves pretty easily and there’s

no way to back up. The quirkiest thing at the moment is that if you want to promote, you need to specify EXACTLY the

piece you’re promoting into; “b7b8=Q” is radically different from “b7b8=q”!!

genctlfile.pl is a Perl script that creates control files for ordinary tablebases, though actually generating larger

tablebases can be quite demanding of a computer. Hoffman has been used to generate a complete set of five-piece

tablebases, as well as a few sixes.

Hoffman can thus duplicate much of the functionality of the Nalimov programs, but that’s not all it can do. It can

also duplicate much of the functionality of Eiko Bleicher’s Freezer (http://www.freezerchess.com/). Aside

from Freezer’s nice GUI, the only thing Hoffman lacks is the ability to use Nalimov tablebases as futurebases, which

matters because 6 piece Nalimov tablebases are available on-line, while only 5 piece tablebases are currently available

for Hoffman. For example, here is a 1901 composition by Lasker and Reichhelm, used as a demo on the Freezer website:

80Z0Z0Z0Z
7j0Z0Z0Z0
60Z0o0Z0Z
5o0ZPZpZ0
4PZ0O0O0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1J0Z0Z0Z0

a b c d e f g h

The Hoffman XML configuration for this problem (Figure 5), is in the xml directory as lasker1901.xml. Several

new features in the configuration should be apparent.

First, note the new location parameter that can be specified for a piece to nail it down to a particular spot. You can

actually specify a list of multiple squares, such as “a4 a5 a6 a7”; we’ll see an example of this later.

Note also the disappearance of the futurebase element; it’s been replaced by a pair of prune statements. The

program pretty much has to have either futurebase or prune statements in order to figure out how to handle things

like captures. In this case, we don’t use futurebases at all (so this is a stand-alone analysis), and instead tell Hoffman to

regard any pawn capture as an immediate victory for the capturing side (that’s the concede part).

Finally, let me point out the prune-enable elements at the beginning of the tablebase section. They don’t do

very much, but they’re very important because the program will refuse to process this tablebase without them. They’re

there because it’s easy to lose track of pruning statements if they get buried inside futurebases. You could easily use

a pruned futurebase to build a tablebase that wouldn’t be accurate, but that also wouldn’t be apparent just from look-

<?xml version="1.0"?>

<!DOCTYPE tablebase SYSTEM "http://www.freesoft.org/software/hoffman/tablebase.dtd">

<tablebase>

<prune-enable color="white" type="concede"/>

<prune-enable color="black" type="concede"/>

<piece color="white" type="king"/>

<piece color="black" type="king"/>

<piece color="white" type="pawn" location="a4"/>

<piece color="white" type="pawn" location="d4"/>

<piece color="white" type="pawn" location="f4"/>

<piece color="white" type="pawn" location="d5"/>

<piece color="black" type="pawn" location="a5"/>

<piece color="black" type="pawn" location="f5"/>

<piece color="black" type="pawn" location="d6"/>

<prune color="white" move="KxP" type="concede"/>

<prune color="black" move="KxP" type="concede"/>

<generation-controls>

<output filename="lasker1901.htb"/>

</generation-controls>

</tablebase>

Figure 5: lasker1901.xml

ing at the tablebase configuration. That’s why the prune-enable elements are there. The program will refuse to

allow any pruning statement, or pruned futurebase, unless there is a matching prune-enable at the beginning of the

tablebase section. This prevents “hidden” prunes from slipping into an analysis by mistake. As their name suggests,

the prune-enable elements “turn on” pruning; the program won’t prune unless they’re there.

OK, so by now we know how to generate lasker1901.htb (hoffman -g lasker1901.xml, right?), and we

can probe the resulting tablebase for the original problem position:

C> ./hoffman -p lasker1901.htb

Hoffman $Revision: 1.16 $ $Locker: $

0 piece Nalimov tablebases found

Loading ’lasker1901.htb’

FEN? 8/k7/3p4/p2P1p2/P2P1P2/8/8/K7 w

FEN 8/k7/3p4/p2P1p2/P2P1P2/8/8/K7 w - -

Index 2368

White moves and wins in 14

Can’t find Nalimov tablebase

Ka1b1 White wins in 14

Ka1a2 Draw

Ka1b2 Draw

FEN or move?

C>

So what’s the point? Can White win in 14 moves? No. White can capture a black pawn in 14 moves, but only if he plays

Kb1! Any other move would allow Black to “draw”, i.e, to prevent White from capturing a pawn without allowing Black

to capture first. In fact, those other two moves allow Black to prevent White from capturing at all, but it’s important to

note that this Hoffman analysis doesn’t guarantee that, since Black might be able to “win” by capturing a pawn. White

might be able to capture a pawn, just not before Black can.

Question: What changes to the configuration would allow us to prove that Black can, in fact, completely prevent White

from making any capture after a move like Ka2?

Answer: Change the black prune-enable and prune elements from concede to discard. Now the analysis will

not consider any black captures, and the only kind of “draw” will be one that completely prevents white from making any

kind of capture. There is one gotcha, however. White might put black in a position where his has to capture a pawn, but

the new analysis would regard this as a stalemate. To avoid this problem, you should also add a third pruning element:

<prune color="white" move="stalemate" type="concede"/>

Here’s another example, also from the Freezer website:

80Z0Z0Z0Z
7Z0Z0Z0j0
60Z0Z0ZpZ
5Z0Z0Z0Z0
4qZ0Z0Z0Z
3Z0Z0S0Z0
20Z0Z0OKZ
1Z0Z0Z0Z0

a b c d e f g h

It’s a fortress. We’re White, and we’re out to show that we can draw this position. My Hoffman analysis is in the

“fortress*.xml” files in the xml directory. You need to have several of the four-piece tablebases built in order to

process them. I’m not going to copy them all into this document; I’ll just ask you to study them on your own while I

point out some salient features.

Notice how futurebase and prune elements can be used together in a single configuration file (in case you were

wondering). Notice how wildcards can be used in prune statements. Notice how a piece can be restricted to more than

one square. Notice how comments can be put into XML configurations.

The pawngen element provides a different way of handling pawns – a table is made of all possible pawn configurations

that can arise from a given start.

The next example is position 67 from Reuben Fine’s book “Basic Chess Endings”. There are too many pieces in play for

Nalimov (eight), and the pawn captures are too complicated for Freezer.

<?xml version="1.0"?>

<!DOCTYPE tablebase SYSTEM "http://www.freesoft.org/software/hoffman/tablebase.dtd">

<!-- Diagram 67 from Rubin Fine’s "Basic Chess Endings" -->

<!-- Problem position 8/2p5/3k4/1p1p1K2/8/1P1P4/2P5/8 w -->

<tablebase>

<prune-enable color="white" type="concede"/>

<prune-enable color="black" type="concede"/>

<dtm/>

<piece color="white" type="king"/>

<piece color="black" type="king"/>

<pawngen white-pawn-locations="b3 c2 d3" black-pawn-locations="b5 c7 d5"/>

<futurebase filename="kpkp.htb"/>

<futurebase filename="kppk.htb"/>

<futurebase filename="kppk.htb" colors="invert"/>

<prune color="white" type="concede" move="P=?"/>

<prune color="black" type="concede" move="P=?"/>

</tablebase>

Figure 6: fine67.xml

80Z0Z0Z0Z
7Z0o0Z0Z0
60Z0j0Z0Z
5ZpZpZKZ0
40Z0Z0Z0Z
3ZPZPZ0Z0
20ZPZ0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

The XML configuration (Figure 6) is fine67.xml, but this file can not be processed directly by Hoffman, because the

program requires the number and color of pieces to be fixed. A starting pawn position with three pawns on each side

can lead to pawn positions with anywhere from zero to three pawns on each side, after captures. Also, Hoffman only

handles captures using futurebases; there is no option for inter-tablebase captures. Attempting to process this file directly

produces an error message:

C> ./hoffman -o fine67.htb -g fine67.xml

Hoffman $Revision: 1.16 $ $Locker: $

terminate called after throwing an instance of ’xmlpp::validity_error’

what():

Validity error:

Element pawngen does not carry attribute black-pawns-required

Element pawngen does not carry attribute white-pawns-required

Instead of using Hoffman directly, we need to run the Perl script “pawngen” on fine67.xml. Pawngen will output a

series of interlinked control files that Hoffman can process. Obviously, considering all possible promotions in this case

would result in positions with multiple queens that would be impossible for Hoffman to process. Pawngen, however, does

honor the prune elements. For this example, pawngen ignored all promotion possibilities (note the prune elements)

and created 10 control files. Run the actual Hoffman analysis by typing “make”. Both Perl (needed to run pawngen) and

make are fairly standard on Linux and other UNIX variants, but neither are included in the Hoffman distribution. On

Microsoft systems, I’ve used the cygwin distribution (which includes both programs) successfully.

“make” runs Hoffman 10 times and produces 10 tablebases. Once this is done, we use Hoffman to probe the tablebases:

C> ./hoffman -p fine67-*.htb

Hoffman $Revision: 1.16 $ $Locker: $

Loading ’fine67-0-3.htb’

Loading ’fine67-1-2.htb’

Loading ’fine67-1-3.htb’

Loading ’fine67-2-1.htb’

Loading ’fine67-2-2.htb’

Loading ’fine67-2-3.htb’

Loading ’fine67-3-0.htb’

Loading ’fine67-3-1.htb’

Loading ’fine67-3-2.htb’

Loading ’fine67-3-3.htb’

Index or FEN? 8/2p5/3k4/1p1p1K2/8/1P1P4/2P5/8 w

Index 1080618 (fine67-3-3.htb)

White wins in 27

Pc2c3 (755539) Draw

Pc2c4 (632731) Black wins in 19

Pb3b4 (928915) White wins in 27

Pd3d4 (936139) Draw

Kf5g5 (1080729) Black wins in 18

Kf5f6 (1081517) Draw

Kf5f4 (1079721) Draw

Kf5g6 (1081627) Black wins in 22

Kf5g4 (1079831) Black wins in 24

FEN 8/2p5/3k4/1p1p1K2/8/1P1P4/2P5/8 w - -

Index, FEN or move?

This analysis confirms Fine’s analysis that b4 is White’s only winning move in this position, although the pruning in the

Hoffman analysis only guarantees that White can force a queen before Black can. In particular, d4 only draws because

Black has the recourse b4 which allows him to blockade the position.

Of course, we’d really like to know if White can win, not just force a queen. A more sophisticated analysis (Figures 7

and 8) is fine67a.xml and fine67b.xml. Notice the white-queens-required attribute on the pawngen

element. This attribute indicates that the white queen in the analysis arose from a pawn being queened. In particular, in

fine67a.xml we only consider pawn positions that arise after one white pawn has queened.

fine67a.xml analyses the position after a white pawn has queened. To analyse the original problem position, we feed

these results to fine67b.xml, which is quite similar to the original fine67.xml, except that we no longer discard

queen promotions and include the fine67a futurebases.

Pawngen, when run on fine67a.xml, produces 8 control files, and fine67b.xml yields 10 control files. When

<?xml version="1.0"?>

<!DOCTYPE tablebase SYSTEM "http://www.freesoft.org/software/hoffman/tablebase.dtd">

<!-- Diagram 67 from Rubin Fine’s "Basic Chess Endings" -->

<!-- Problem position 8/2p5/3k4/1p1p1K2/8/1P1P4/2P5/8 w -->

<tablebase>

<prune-enable color="white" type="discard"/>

<prune-enable color="black" type="concede"/>

<dtm/>

<piece color="white" type="king"/>

<piece color="black" type="king"/>

<piece color="white" type="queen"/>

<pawngen white-pawn-locations="b3 c2 d3" black-pawn-locations="b5 c7 d5" white-queens-required="1"/>

<futurebase filename="kqkp.htb"/>

<futurebase filename="kqpk.htb"/>

<prune color="white" type="discard" move="P=?"/>

<prune color="black" type="concede" move="P*=?"/>

<prune color="black" type="concede" move="?xQ"/>

</tablebase>

Figure 7: fine67a.xml

<?xml version="1.0"?>

<!DOCTYPE tablebase SYSTEM "http://www.freesoft.org/software/hoffman/tablebase.dtd">

<!-- Diagram 67 from Rubin Fine’s "Basic Chess Endings" -->

<!-- Problem position 8/2p5/3k4/1p1p1K2/8/1P1P4/2P5/8 w -->

<tablebase>

<prune-enable color="white" type="discard"/>

<prune-enable color="black" type="concede"/>

<dtm/>

<piece color="white" type="king"/>

<piece color="black" type="king"/>

<pawngen white-pawn-locations="b3 c2 d3" black-pawn-locations="b5 c7 d5"/>

<futurebase filename="fine67a-*.htb"/>

<futurebase filename="kpkp.htb"/>

<futurebase filename="kppk.htb"/>

<futurebase filename="kppk.htb" colors="invert"/>

<prune color="white" type="discard" move="P=[NBR]"/>

<prune color="black" type="concede" move="P=?"/>

</tablebase>

Figure 8: fine67b.xml

complete, its output tablebases can be queried for the original position:

C> ./hoffman -p fine67[ab]*.htb

Hoffman $Revision: 1.16 $ $Locker: $

Loading ’fine67a-0-2.htb’

Loading ’fine67a-0-3.htb’

Loading ’fine67a-1-1.htb’

Loading ’fine67a-1-2.htb’

Loading ’fine67a-1-3.htb’

Loading ’fine67a-2-0.htb’

Loading ’fine67a-2-1.htb’

Loading ’fine67a-2-2.htb’

Loading ’fine67b-0-3.htb’

Loading ’fine67b-1-2.htb’

Loading ’fine67b-1-3.htb’

Loading ’fine67b-2-1.htb’

Loading ’fine67b-2-2.htb’

Loading ’fine67b-2-3.htb’

Loading ’fine67b-3-0.htb’

Loading ’fine67b-3-1.htb’

Loading ’fine67b-3-2.htb’

Loading ’fine67b-3-3.htb’

Index or FEN? 8/2p5/3k4/1p1p1K2/8/1P1P4/2P5/8 w

Index 1080618 (fine67b-3-3.htb)

White wins in 27

Pc2c3 (755539) Draw

Pc2c4 (632731) Black wins in 19

Pb3b4 (928915) White wins in 27

Pd3d4 (936139) Draw

Kf5g5 (1080729) Black wins in 18

Kf5f6 (1081517) Draw

Kf5f4 (1079721) Draw

Kf5g6 (1081627) Black wins in 22

Kf5g4 (1079831) Black wins in 24

FEN 8/2p5/3k4/1p1p1K2/8/1P1P4/2P5/8 w - -

Index, FEN or move?

Again, we show a white win with b4. This time, however, we know that this is actually a white win and not just a

queening solution.

Here’s a position that Ivan Konobeev has studied extensively using FinalGen, which can only conclude that Re8 is black’s

only hope, without being able to establish it definitely as a win or a draw.

80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0ZrZ0Z
5Z0ZkZKZ0
40Z0o0Z0O
3Z0Z0Z0Z0
20Z0Z0ZPZ
1Z0Z0Z0ZR

a b c d e f g h

The files ivand.xml, ivane.xml, and ivanf.xml contain a Hoffman analysis, with all promotion possibilities

conceded as wins. Hoffman reaches a similar conclusion as FinalGen:

C> ./hoffman -p test/ivan[def]*.htb

Hoffman $Revision: 1.16 $ $Locker: $

Loading ’test/ivand-2-0.htb’

Loading ’test/ivand-2-1.htb’

Loading ’test/ivane-2-0.htb’

Loading ’test/ivane-2-1.htb’

Loading ’test/ivanf-1-1.htb’

Loading ’test/ivanf-2-0.htb’

Loading ’test/ivanf-2-1.htb’

Index or FEN? 8/8/4r3/3k1K2/3p3P/8/6P1/7R b

Index 1876257633 (test/ivanf-2-1.htb)

Draw

Pd4d3 (1766972960) White wins in 32

Kd5c5 (1876257630) White wins in 6

Kd5d6 (1876257642) White wins in 23

Kd5c6 (1876257640) White wins in 6

Kd5c4 (1876257620) White wins in 13

Re6f6 (1876705520) White wins in 8

Re6g6 (1877153408) White wins in 8

Re6h6 (1877601296) White wins in 24

Re6d6 (1875809744) White wins in 23

Re6c6 (1875361856) White wins in 23

Re6b6 (1874913968) White wins in 23

Re6a6 (1874466080) White wins in 23

Re6e7 (1879840736) White wins in 25

Re6e8 (1883423840) Draw

Re6e5 (1873122416) White wins in 35

Re6e4 (1869987200) White wins in 25

Re6e3 (1866404096) White wins in 25

Re6e2 (1862820992) White wins in 25

Re6e1 (1859685776) White wins in 6

FEN 8/8/4r3/3k1K2/3p3P/8/6P1/7R b - -

Index, FEN or move?

Specifically, all black moves other than Re8 allow white to force a queen before black, while Re8 allows each side to

prevent the other from promoting.

The files ivana.xml, ivanb.xml, and ivanc.xml contain a Hoffman analysis with black promotions discarded,

but since white has the advantage in this position, this isn’t a very enlightening analysis. More interesting would be to

discard white promotions, but an intuitive evaluation of the diagrammed position suggests that white is unlikely to mate

without promoting.

A more detailed analysis would require allowing queens into the position along with the rooks.

See the Hoffman Reference Guide for more details on these and other Hoffman XML elements.

