
The Hoffman Tutorial

Brent Baccala

November 24, 2013

Hoffman is a program to solve chess endgames using retrograde analysis. A retrograde analysis program is much different
from a conventional computer chess programs. Retrograde analysis is only useful in the endgame, runs very slowly, and
produces enormous amounts of data. Its great advantage lies in its ability to completely solve the endgame. In a very
real sense, a retrograde engine has no “move horizon” like a conventional chess engine. It sees everything. For those not
up on Americana, the program is named after Trevor Hoffman, an All Star baseball pitcher who specializes in “closing”
games. It was written specifically for The World vs. Arno Nickel game.

The first thing to understand is that Hoffman uses XML control files to govern its operation. Hoffman comes with an
xml directory containing a number of these control files. I’ll illustrate how Hoffman works using these examples. For
example, Figure 1 shows about the simplest possible XML control file, for the king vs. king endgame, contained in the
file xml/kk.xml.

What does this all mean? Well, the first two lines identify this as a Hoffman XML tablebase file; copy them verbatim
at the top of any new Hoffman control file. The third line illustrates XML’s comment format; anything between <!--
and --> is a comment, in this case the identity of the Perl script that created this file. The bulk of the file is contained
between the two lines <tablebase> and </tablebase>. tablebase is a simple example of an XML element,
which come in basically two flavors: the simple kind and the complex kind. The simple kind, like, say, piece, have only
a single tag that ends with a slash. The complex kind have both a beginning and an ending tag. The beginning tag does
not have a slash, and the ending tag is identical to the beginning tag except that it starts with a slash (like tablebase).
Complex elements allow you to put things between the starting and ending tags. Follow my lead; it’ll start to make sense
soon.

The piece elements are probably self-explanatory. Notice that I didn’t specify where on the board the kings were.
That’s because we’re going to compute results for every chess position possible with these two pieces. Their movements
are completely unrestricted — they can be anywhere on the board. Later we’ll see more complex piece elements that
restrict where on the board the pieces can be.

Finally, we come to output, which tells the program where to put the output tablebase, in this case, into a file called

<?xml version="1.0"?>
<!DOCTYPE tablebase SYSTEM "http://www.freesoft.org/software/hoffman/tablebase.dtd">
<!-- Created by genctlfile.pl -->

<tablebase>
<piece color="white" type="king"/>
<piece color="black" type="king"/>
<output filename="kk.htb"/>

</tablebase>

Figure 1: kk.xml

<?xml version="1.0"?>
<!DOCTYPE tablebase SYSTEM "http://www.freesoft.org/software/hoffman/tablebase.dtd">
<!-- Created by genctlfile.pl -->

<tablebase>
<piece color="white" type="king"/>
<piece color="black" type="king"/>
<piece color="white" type="queen"/>
<futurebase filename="kk.htb"/>
<output filename ="kqk.htb"/>

</tablebase>

Figure 2: kqk.xml

kk.htb. You can rename the resulting tablebase file as you wish; the tablebase isn’t tied to a particular filename.

Now you put all this into a file called something like kk.xml, (or just copy it from the xml directory) and run Hoffman
like this:

C> hoffman -g kk.xml
Initializing tablebase
Checking futuremoves...
All futuremoves handled under move restrictions
Intra-table propagating
Pass 0 complete; 840 positions processed
Pass 1 complete; 0 positions processed
C>

There isn’t much to see, of course. The “-g” option meant “generate”. King vs king is nothing more than figuring out the
difference between illegal positions and draws. But this information is important, because it’s needed to back propagate
from the (slightly) more complex three piece endgames, like the king and queen endgame whose XML configuration is
shown in Figure 2.

Notice the new “futurebase” line. This tells Hoffman where to get the information about what happens when the black
king can capture the white queen, because a tablebase contains information for exactly the piece configuration it is set up
for — nothing more, nothing less.

So put all this in a file called kqk.xml, make sure the kk.htb file from the first run is present, and run Hoffman again:

C> ./hoffman -g -o kqk.htb kqk.xml
Initializing tablebase
Back propagating from ’kk.htb’
Checking futuremoves...
All futuremoves handled under move restrictions
Intra-table propagating
Pass 0 complete; 131516 positions processed
Pass 1 complete; 364 positions processed
Pass 2 complete; 2448 positions processed
Pass 3 complete; 1352 positions processed

Pass 4 complete; 5012 positions processed
Pass 5 complete; 2956 positions processed
Pass 6 complete; 9064 positions processed
Pass 7 complete; 7480 positions processed
Pass 8 complete; 19964 positions processed
Pass 9 complete; 14144 positions processed
Pass 10 complete; 26164 positions processed
Pass 11 complete; 25484 positions processed
Pass 12 complete; 32064 positions processed
Pass 13 complete; 39908 positions processed
Pass 14 complete; 32104 positions processed
Pass 15 complete; 54052 positions processed
Pass 16 complete; 15000 positions processed
Pass 17 complete; 43800 positions processed
Pass 18 complete; 2680 positions processed
Pass 19 complete; 11300 positions processed
Pass 20 complete; 8 positions processed
Pass 21 complete; 56 positions processed
Pass 22 complete; 0 positions processed
C>

See, it’s a little more interesting this time, right?

Now is a good time to introduce the “-i” (information) option. Once you’ve got a bunch of .htb files sitting around, and
you can’t remember which XML control file was used to generate which tablebase, there’s no need to panic. Everything
from the original XML configuration is saved into the resulting tablebase, along with a bunch more information, and all
of it can be retrieved from the tablebase using -i:

C> hoffman -i kqk.htb
Hoffman $Revision: 1.12 $ $Locker: $
0 piece Nalimov tablebases found
<?xml version="1.0"?>
<!DOCTYPE tablebase SYSTEM "http://www.freesoft.org/software/hoffman/tablebase.dtd">
<tablebase offset="0x0fe4">

<index type="compact" symmetry="8-way"/>
<format><dtm bits="8"/></format>
<piece color="white" type="king"/>
<piece color="black" type="king"/>
<piece color="white" type="queen"/>
<futurebase filename="kk.htb"/>
<tablebase-statistics>

<indices>59136</indices>
<PNTM-mated-positions>10152</PNTM-mated-positions>
<legal-positions>47136</legal-positions>
<stalemate-positions>115</stalemate-positions>
<white-wins-positions>44183</white-wins-positions>
<black-wins-positions>0</black-wins-positions>
<forward-moves>686465</forward-moves>
<futuremoves>2838</futuremoves>
<max-dtm>11</max-dtm>
<min-dtm>-11</min-dtm>

</tablebase-statistics>
<generation-statistics>

<?xml version="1.0"?>
<!DOCTYPE tablebase SYSTEM "http://www.freesoft.org/software/hoffman/tablebase.dtd">
<!-- Created by genctlfile.pl -->

<tablebase>
<piece color="white" type="king"/>
<piece color="black" type="king"/>
<piece color="white" type="pawn"/>
<futurebase filename="kk.htb"/>
<futurebase filename="kqk.htb"/>
<futurebase filename="krk.htb"/>
<futurebase filename="kbk.htb"/>
<futurebase filename="knk.htb"/>
<output filename ="kpk.htb"/>

</tablebase>

Figure 3: kpk.xml

<host>debian.freesoft.org</host>
<program>Hoffman $Revision: 1.12 $ $Locker: $</program>
<args>./hoffman -g -o kqk.htb kqk.xml </args>
<start-time>Sat Dec 16 02:11:28 2006 EST</start-time>
<completion-time>Sat Dec 16 02:11:36 2006 EST</completion-time>
<user-time>2.782s</user-time>
<system-time>0.018s</system-time>
<real-time>8.052s</real-time>

... about 60 more lines deleted ...

</generation-statistics>
</tablebase>

We see the configuration information from the input XML file, plus a lot more information added by the program. We
see the encoding scheme used to number the board positions (the index element), the type of information stored for
each position (the dtm element – Distance To Mate), as well as two entire new sections — tablebase-statistics
and generation-statistics. The first reports various interesting information the program determined about the
tablebase, such as how many total indices there are, how many correspond to legal chess positions, how many white
mates, or black mates, or stalemates there are, etc. The second reports information about the actual generation of this
tablebase, like when it occured, which version of the program was used, and which computer actually computed it.

OK, so what’s next? After kk.xml and kqk.xml, then you can easily understand krk.xml, kbk.xml and knk.xml.
Once all five of these are processed, you’re now ready to build kpk.xml (Figure 3).

Notice we’ve added a new type of futurebase — pawn promotion. Hoffman has to know what happens after that
pawn transforms into a queen, rook, bishop, or knight to be able to understand what happens to the pawn!

It’s starting to get more complex, right? So how do I know there isn’t a bug in all of this complexity? Well, my most
important blunder check is to verify the program’s operation against the Nalimov tablebases. You can do this, too. If
you download the appropriate Nalimov tablebases from the Internet (in this case, the two KPK files), you can verify
that Hoffman’s results are identical to Nalimov’s using the “-v” (verify) and “-n directory” (location of Nalimov files)
options, like this:

<?xml version="1.0"?>
<!DOCTYPE tablebase SYSTEM "http://www.freesoft.org/software/hoffman/tablebase.dtd">
<!-- Created by genctlfile.pl -->

<tablebase>
<piece color="white" type="king"/>
<piece color="black" type="king"/>
<piece color="white" type="queen"/>
<piece color="black" type="queen"/>
<futurebase filename="kqk.htb" colors="invert"/>
<futurebase filename="kqk.htb"/>
<output filename ="kqkq.htb"/>

</tablebase>

Figure 4: kqkq.xml

C> ./hoffman -v -n Nalimov/ kpk.htb
Hoffman $Revision: 1.12 $ $Locker: $
5 piece Nalimov tablebases found
Loading ’kpk.htb’
Verifying tablebase against Nalimov
C>

There were no complaints, so that means everything verified OK.

So now you’ve got all of the three piece tablebases. Ready to try a four piece? Figure 4 is kqkq.xml.

Notice several things. First, we no longer specify kk.htb as a futurebase. We’re only interested in the single captures
that lead out of the tablebase we’re building. kk.htb has already been used to build kqk.htb, so its data is in there.
Two queens can’t be taken on a single move, so all we need to worry about is what happens if one of them is captured.
That’s why I use the kqk.htb tablebase. Notice that I use it twice, depending on which queen is being captured. The
kqk.htb tablebase has a white queen in it, and the colors="invert" option to the futurebase element handles
the case where the white queen is captured and we’re left with a black queen on the board.

You’ll notice also that a four piece tablebase takes a good bit longer to compute than a three piece one.

Oh, and I suppose having generating all of these tablebases, you now want to query them, huh?

You do that using the probe (-p) option, followed by a list of tablebases. Since we’ve got a small collection of simple
tablebases, it’s easiest to just load them all, like this:

C> ./hoffman -p *.htb
4 piece Nalimov tablebases found
Loading ’kk.htb’
Loading ’knk.htb’
Loading ’knkn.htb’
Loading ’knkp.htb’
Loading ’kpk.htb’
Loading ’kpkp.htb’
Loading ’kpkq.htb’
Loading ’kqk.htb’

Loading ’kqkn.htb’
Loading ’kqkp.htb’
Loading ’kqkq.htb’
Loading ’kqkr.htb’
Loading ’krk.htb’
Loading ’krkn.htb’
Loading ’krkp.htb’
Loading ’krkr.htb’
FEN? 8/8/8/8/p7/8/1P4k1/2K5 b
FEN 8/8/8/8/p7/8/1P4k1/2K5 b - -
Index 12658437
Draw

Nalimov score: DRAW
g2h2 White moves and wins in 22
g2f2 White moves and wins in 25
g2g3 White moves and wins in 25
g2g1 White moves and wins in 25
g2f3 Draw
g2h3 White moves and wins in 22
g2f1 White moves and wins in 25
g2h1 White moves and wins in 21
a4a3 White moves and wins in 16

FEN or move? g2f3
FEN 8/8/8/8/p7/5k2/1P6/2K5 w - -
Index 12659332
Draw

Nalimov score: DRAW
c1d1 Draw
c1b1 Draw
c1c2 Draw
c1d2 Draw
b2b3 Draw
b2b4 Draw

FEN or move? b2b4
FEN 8/8/8/8/pP6/5k2/8/2K5 b - b3
Index 12593797
Draw

Nalimov score: DRAW
f3g3 White moves and wins in 15
f3e3 White moves and wins in 15
f3f4 White moves and wins in 23
f3f2 White moves and wins in 15
f3e4 Draw
f3g4 White moves and wins in 15
f3e2 White moves and wins in 15
f3g2 White moves and wins in 15
a4xb3 Draw

FEN or move?

baccala@debian ˜/src/endgame$

At the “FEN?” prompt you want to enter a chess position in FEN notation (you can leave off the castling rights and
en passant square if you want). The program spits back its evaluation of the position (if it has one), along with a list
of moves and how they evaluate. It has a history feature, so once you’ve typed a FEN position in once, if you end the
program with a CNTL-D and not a CNTL-C, it will save everything to a history file, and you can retrieve it again on a
later run using the up arrow key.

After you’ve put a FEN position in, you get a “FEN or move?” prompt, which allows you to enter moves and thus step
forward in the game. The move parser isn’t very smart right now; you can make illegal moves pretty easily and there’s
no way to back up. The quirkiest thing at the moment is that if you want to promote, you need to specify EXACTLY the
piece you’re promoting into; “b7b8=Q” is radically different from “b7b8=q”!!

The xml directory contains all of the XML configuration files needed to generate a complete set of three- and four-piece
tablebases. These files were created by genctlfile.pl, a Perl script that can also create control files for five- and
six-piece tablebases, though actually generating them can be quite demanding of a computer. genalltb is a shell script
that will run Hoffman repeatedly on these files, and in the correct order, though it may take several hours to run. Hoffman
has also been used to generate a complete set of five-piece tablebases, but this takes considerably longer.

Hoffman can thus duplicate much of the functionality of the Nalimov programs, but that’s not all it can do. It can
also duplicate much of the functionality of Eiko Bleicher’s Freezer (http://www.freezerchess.com/). Aside
from Freezer’s nice GUI, the only thing Hoffman lacks is the ability to use Nalimov tablebases as futurebases, which
matters because 6 piece Nalimov tablebases are available on-line, while only 5 piece tablebases are currently available
for Hoffman. For example, here is a 1901 composition by Lasker and Reichhelm, used as a demo on the Freezer website:

80Z0Z0Z0Z
7j0Z0Z0Z0
60Z0o0Z0Z
5o0ZPZpZ0
4PZ0O0O0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1J0Z0Z0Z0

a b c d e f g h

The Hoffman XML configuration for this problem (Figure 5), is in the xml directory as lasker1901.xml. Several
new features in the configuration should be apparent.

First, note the new location parameter that can be specified for a piece to nail it down to a particular spot. You can
actually specify a list of multiple squares, such as “a4 a5 a6 a7”; we’ll see an example of this later.

Note also the disappearance of the futurebase element; it’s been replaced by a pair of prune statements. The
program pretty much has to have either futurebase or prune statements in order to figure out how to handle things
like captures. In this case, we don’t use futurebases at all (so this is a stand-alone analysis), and instead tell Hoffman to
regard any pawn capture as an immediate victory for the capturing side (that’s the concede part).

Finally, let me point out the prune-enable elements at the beginning of the tablebase section. They don’t do
very much, but they’re very important because the program will refuse to process this tablebase without them. They’re

<?xml version="1.0"?>
<!DOCTYPE tablebase SYSTEM "http://www.freesoft.org/software/hoffman/tablebase.dtd">

<tablebase>
<prune-enable color="white" type="concede"/>
<prune-enable color="black" type="concede"/>

<piece color="white" type="king"/>
<piece color="black" type="king"/>
<piece color="white" type="pawn" location="a4"/>
<piece color="white" type="pawn" location="d4"/>
<piece color="white" type="pawn" location="f4"/>
<piece color="white" type="pawn" location="d5"/>
<piece color="black" type="pawn" location="a5"/>
<piece color="black" type="pawn" location="f5"/>
<piece color="black" type="pawn" location="d6"/>

<prune color="white" move="KxP" type="concede"/>
<prune color="black" move="KxP" type="concede"/>

<generation-controls>
<output filename="lasker1901.htb"/>

</generation-controls>
</tablebase>

Figure 5: lasker1901.xml

there because it’s easy to lose track of pruning statements if they get buried inside futurebases. You could easily use
a pruned futurebase to build a tablebase that wouldn’t be accurate, but that also wouldn’t be apparent just from look-
ing at the tablebase configuration. That’s why the prune-enable elements are there. The program will refuse to
allow any pruning statement, or pruned futurebase, unless there is a matching prune-enable at the beginning of the
tablebase section. This prevents “hidden” prunes from slipping into an analysis by mistake. As their name suggests,
the prune-enable elements “turn on” pruning; the program won’t prune unless they’re there.

OK, so by now we know how to generate lasker1901.htb (hoffman -g lasker1901.xml, right?), and we
can probe the resulting tablebase for the original problem position:

C> ./hoffman -p lasker1901.htb
Hoffman $Revision: 1.12 $ $Locker: $
0 piece Nalimov tablebases found
Loading ’lasker1901.htb’
FEN? 8/k7/3p4/p2P1p2/P2P1P2/8/8/K7 w
FEN 8/k7/3p4/p2P1p2/P2P1P2/8/8/K7 w - -
Index 2368
White moves and wins in 14
Can’t find Nalimov tablebase

Ka1b1 White wins in 14
Ka1a2 Draw
Ka1b2 Draw

FEN or move?
C>

So what’s the point? Can White win in 14 moves? No. White can capture a black pawn in 14 moves, but only if he plays
Kb1! Any other move would allow Black to “draw”, i.e, to prevent White from capturing a pawn without allowing Black
to capture first. In fact, those other two moves allow Black to prevent White from capturing at all, but it’s important to
note that this Hoffman analysis doesn’t guarantee that, since Black might be able to “win” by capturing a pawn. White
might be able to capture a pawn, just not before Black can.

Question: What changes to the configuration would allow us to prove that Black can, in fact, completely prevent White
from making any capture after a move like Ka2?

Answer: Change the black prune-enable and prune elements from concede to discard. Now the analysis will
not consider any black captures, and the only kind of “draw” will be one that completely prevents white from making any
kind of capture. There is one gotcha, however. White might put black in a position where his has to capture a pawn, but
the new analysis would regard this as a stalemate. To avoid this problem, you should also add a third pruning element:
<prune color="white" move="stalemate" type="concede"/>

Here’s another example, also from the Freezer website:

80Z0Z0Z0Z
7Z0Z0Z0j0
60Z0Z0ZpZ
5Z0Z0Z0Z0
4qZ0Z0Z0Z
3Z0Z0S0Z0
20Z0Z0OKZ
1Z0Z0Z0Z0

a b c d e f g h

It’s a fortress. We’re White, and we’re out to show that we can draw this position. My Hoffman analysis is in the
“fortress*.xml” files in the xml directory. You need to have several of the four-piece tablebases built in order to
process them. I’m not going to copy them all into this document; I’ll just ask you to study them on your own while I
point out some salient features.

Notice how futurebase and prune statements can be used together in a single configuration file (in case you were
wondering). Notice how wildcards can be used in prune statements. Notice how a piece can be restricted to more than
one square. Notice how comments can be put into XML configurations.

Here’s a final example that neither Nalimov nor Freezer can handle. There are too many pieces in play for Nalimov
(eight), and the pawn captures are too complicated for Freezer. This is position 67 from Reuben Fine’s book “Basic
Chess Endings”:

<?xml version="1.0"?>
<!DOCTYPE tablebase SYSTEM "http://www.freesoft.org/software/hoffman/tablebase.dtd">
<!-- Diagram 67 from Rubin Fine’s "Basic Chess Endings" -->

<tablebase>
<prune-enable color="white" type="concede"/>
<prune-enable color="black" type="concede"/>

<piece color="white" type="king"/>
<piece color="white" type="pawn" location="b3+"/>
<piece color="white" type="pawn" location="c2+"/>
<piece color="white" type="pawn" location="d3+"/>
<piece color="black" type="king"/>
<piece color="black" type="pawn" location="b5+"/>
<piece color="black" type="pawn" location="c7+"/>
<piece color="black" type="pawn" location="d5+"/>

<futurebase filename="kpk.htb"/>
<futurebase filename="kpk.htb" colors="invert"/>

<prune color="white" type="concede" move="P=?"/>
<prune color="black" type="concede" move="P=?"/>

</tablebase>

Figure 6: fine67.xml

80Z0Z0Z0Z
7Z0o0Z0Z0
60Z0j0Z0Z
5ZpZpZKZ0
40Z0Z0Z0Z
3ZPZPZ0Z0
20ZPZ0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

The XML configuration (Figure 6) is fine67.xml, but this file can not be processed directly by Hoffman. Why? Note
that pawn captures are possible from this tablebase (the plus signs in the location attributes mean to advance the
pawn as far as it can go), yet we have not specified any futurebase or prune elements to handle those captures.
Attempting to run Hoffman on this file will generate an error:

C> ./hoffman -o fine67.htb -g fine67.xml
Hoffman $Revision: 1.12 $ $Locker: $
Malloced 40MB for tablebase entries
’kpk.htb’: Too many missing pieces in futurebase
Futurebase preload failed: ’kpk.htb’
C>

Instead of using Hoffman directly, we need to run “pawngen” on fine67.xml, and it’s best to do this in a directory
empty except for the futurebase kpk.htb. Pawngen will consider all possible pawn movements, captures, and pro-
motions, and output a series of interlinked control files that Hoffman can process. Obviously, considering all possible
promotions in this case would result in positions with multiple queens that would be impossible for Hoffman to process.
Pawngen, however, does honor the prune elements. For this example, pawngen ignored all promotion possibilities (note
the prune elements) and created 173 control files, along with a makefile listing the interdependencies between them.
Run the actual Hoffman analysis by typing “make”. Both Perl (needed to run pawngen) and make are fairly standard on
Linux and other UNIX variants, but neither are included in the Hoffman distribution. On Microsoft systems, I’ve used
the cygwin distribution (which includes both programs) successfully.

“make” runs Hoffman, yes, 173 times and produces a directory full of tablebases. Once this is done, we use Hoffman to
probe the tablebases:

C> ./hoffman -p *.htb
Hoffman $Revision: 1.12 $ $Locker: $
0 piece Nalimov tablebases found
Loading ’Kb3b3c4Kd5.htb’
Loading ’Kb3b4c4K.htb’
Loading ’Kb3b4d3Kc7.htb’
Loading ’Kb3b4d3Kd5c7.htb’
...
Loading ’KKd6c4b5.htb’
Loading ’KKd6c4.htb’
FEN? 8/2p5/3k4/1p1p1K2/8/1P1P4/2P5/8 w
FEN 8/2p5/3k4/1p1p1K2/8/1P1P4/2P5/8 w - -
Index 12369740 (Kb3c2d3Kd5c7b5.htb)
White moves and wins in 21
Can’t find Nalimov tablebase

Pc2c3 Black moves and wins in 16
Pc2c4 Black moves and wins in 19
Pb3b4 White wins in 21
Pd3d4 Draw
Kf5g5 Black moves and wins in 13
Kf5f6 Draw
Kf5f4 Draw
Kf5g6 Black moves and wins in 13
Kf5g4 Black moves and wins in 23

FEN or move? d3d4
FEN 8/2p5/3k4/1p1p1K2/3P4/1P6/2P5/8 b - -
Index 12369849 (Kb3c2d3Kd5c7b5.htb)
Draw
Can’t find Nalimov tablebase

Pb5b4 Draw
Kd6c6 White moves and wins in 21
Kd6d7 White moves and wins in 36
Kd6e7 White moves and wins in 20
Pc7c6 White moves and wins in 20
Pc7c5 White moves and wins in 20

FEN or move?

<?xml version="1.0"?>
<!DOCTYPE tablebase SYSTEM "http://www.freesoft.org/software/hoffman/tablebase.dtd">
<!-- Diagram 67 from Rubin Fine’s "Basic Chess Endings" -->

<tablebase>
<prune-enable color="white" type="discard"/>
<prune-enable color="black" type="concede"/>

<piece color="white" type="king"/>
<piece color="white" type="pawn" location="b3+"/>
<piece color="white" type="pawn" location="c2+"/>
<piece color="white" type="pawn" location="d3+"/>
<piece color="black" type="king"/>
<piece color="black" type="pawn" location="b5+"/>
<piece color="black" type="pawn" location="c7+"/>
<piece color="black" type="pawn" location="d5+"/>

<futurebase filename="kpk.htb"/>
<futurebase filename="kpk.htb" colors="invert"/>
<futurebase filename="kqk.htb"/>
<futurebase filename="kqkp.htb"/>
<futurebase filename="kqpk.htb"/>

<prune color="white" type="discard" move="P=Q"
pawngen-condition="grep(/Q/,@white_pieces)==1"/>

<prune color="white" type="discard" move="P=[RNB]"/>
<prune color="black" type="concede" move="P*=?"/>
<prune color="black" type="concede" move="?xQ"/>
<prune color="black" type="concede" move="?xP"

pawngen-condition="grep(/Q/,@white_pieces)==0 and $#white_pawns==0"/>
</tablebase>

Figure 7: fine67a.xml

This analysis confirms Fine’s analysis that b4 is White’s only winning move in this position, although the pruning in the
Hoffman analysis only guarantees that White can force a queen before Black can. In particular, d4 only draws because
Black has the recourse b4 which allows him to blockade the position.

Of course, we’d really like to know if White can win, not just force a queen. A more sophisticated analysis (Figure
7) is fine67a.xml. Notice the pawngen-condition attributes on two of the prune elements. These attributes
specify Perl expressions that will be evaluated by pawngen to selectively include or exclude the prune elements. In
this example, we want to allow a single white queen promotion, so we unconditionally discard all white promotions into
rooks, knights, or bishops, as well as white queen promotions if a white queen is already present. Thus we’ll consider
positions with a single white queen, but not two. In addition to promotions, we’ll also concede some other moves to black
that should simplify our analysis somewhat. We never want to allow black to capture the white queen, so we concede
“?xQ”, and there’s no reason to allow black to capture the last white pawn if white hasn’t queened, so we selectively
prune “?xP”. The syntax of this last statement is somewhat confusing unless you know that the Perl operator $# counts
starting at zero, so $#white pawns==0 actually tests if there is a single white pawn present.

Pawngen, when run on fine67a.xml, produces 229 control files, of which 78 contain queens, so this analysis takes
longer to run than fine67.xml (half a day instead of an hour). When complete, its output tablebases can be queried
for the original position:

C> ./hoffman -p *.htb
Hoffman $Revision: 1.12 $ $Locker: $
0 piece Nalimov tablebases found
Loading ’Kb3b3c4Kd5.htb’
Loading ’Kb3b4c4K.htb’
Loading ’Kb3b4d3Kc7.htb’
...
Loading ’KQKd5d4.htb’
Loading ’KQKd6b5.htb’
Loading ’KQKd6c4.htb’
FEN? 8/2p5/3k4/1p1p1K2/8/1P1P4/2P5/8 w
FEN 8/2p5/3k4/1p1p1K2/8/1P1P4/2P5/8 w - -
Index 12369740 (Kb3c2d3Kd5c7b5.htb)
White moves and wins in 27
Can’t find Nalimov tablebase

Pc2c3 Black moves and wins in 11
Pc2c4 Black moves and wins in 5
Pb3b4 White wins in 27
Pd3d4 Draw
Kf5g5 Black moves and wins in 10
Kf5f6 Draw
Kf5f4 Draw
Kf5g6 Black moves and wins in 10
Kf5g4 Black moves and wins in 15

FEN or move?

Again, we show a white win with b4. This time, however, we know that this is actually a white win and not just a
queening solution.

Pawngen currently accepts only a subset of Hoffman’s XML syntax — no location attributes are allowed on any
non-pawns, and pawns must have location attributes specifying a specific starting square followed by a plus sign.
Despite these limitations, it is a key auxiliary tool that allows complicated pawn formations to be managed with a single
control file.

See the Hoffman Reference Guide for more details on these and other Hoffman XML elements.

