The Hoffman Tutorial

Brent Baccala

February 24, 2009

Hoffman is a program to solve chess endgames using retrograde anAlyeiisograde analysis program is much different
from a conventional computer chess programs. Retrograde analysiy isseful in the endgame, runs very slowly, and
produces enormous amounts of data. Its great advantage lies in its abilitjnpetely solve the endgame. In a very
real sense, a retrograde engine has no “move horizon” like a conmahtibess engine. It sees everything. For those not
up on Americana, the program is named after Trevor Hoffman, an All Siselimll pitcher who specializes in “closing”
games. It was written specifically for The World vs. Arno Nickel game.

The first thing to understand is that Hoffman uses XML control files to goits operation. Hoffman comes with an
xml directory containing a number of these control files. I'll illustrate how Haih works using these examples. For
example, Figure 1 shows about the simplest possible XML control file, #okitig vs. king endgame, contained in the
file xml/kk.xml

What does this all mean? Well, the first two lines identify this as a Hoffman XMlekatse file; copy them verbatim
at the top of any new Hoffman control file. The third line illustrates XML's comirfermat; anything betweex!--
and--> is a comment, in this case the identity of the Perl script that created this file. ullheftthe file is contained
between the two linestablebase> and</tablebase> . tablebase is a simple example of an XMEement,
which come in basically two flavors: the simple kind and the complex kind. The skimglelike, saypiece , have only

a single tag that ends with a slash. The complex kind have both a beginnirzgnamdling tag. The beginning tag does
not have a slash, and the ending tag is identical to the beginning tag exaeipstarts with a slash (likeblebase).
Complex elements allow you to put things between the starting and ending tdigsv Fy lead; it'll start to make sense
soon.

Theindex element controls how Hoffman numbers the positions in the tablebase. I'g tisiricompact” index type,
which is a pretty good choice right now for just about everything, avne &lso specified a “symmetry” to indicate that

<?xml version="1.0"?>
<IDOCTYPE tablebase SYSTEM "http://www.freesoft.org/so ftware/hoffman/tablebase.dtd">
<l-- Created by genctlfile.pl -->

<tablebase>
<index type="compact" symmetry="8-way"/>
<format><dtm bits="8"/></format>
<piece color="white" type="king"/>
<piece color="black" type="king"/>
<generation-controls>

<output filename ="kk.htb"/>

</generation-controls>

</tablebase>

Figure 1:kk.xml

| only want to store positions where the white king is in a little triangular eighth obtsd. Why? Because you can
rotate and reflect the board around to put the white king anywhere yothiva. Think about it. Symmetry doesn’t work
with all tablebases. If there were pawns involved, for example, yout gast'rotate the board 90 degrees. But since all
we have are kings, symmetry is OK, and it makes the resulting tablebase a llgtrsma

Now we have dormat line, indicating that we want an output format with one field — an eightlisince to mate
(DTM) — for each position. In other words, the classic “mate in N” or “matetlinso long as N can fit into eight bits
(so it has to be “mate in 126" or less, since DTM is a signed field). Eight bKDSTbig enough for every three, four, or
five piece tablebase except kppkp, so just copy this line verbatim, too.

Next up are thpiece elements, probably the most self-explanatory part of the entire contfigiurélotice that | didn’t
specify where on the board the kings were. That's because we'rg goinompute results for every chess position
possible with these two pieces. Their movements are completely unrestrictedy-eatinde anywhere on the board.
Later we'll see more complex piece elements that restrict where on the thegpieces can be.

Finally, we come togeneration-controls , Which contains parameters that really have nothing to do with the
tablebase itself, but are settings to be used during generation. The siggresation control isutput , which tells

the program where to put the output tablebase, in this case, into a file kkllgth . You can rename the resulting
tablebase file as you wish; the tablebase isn'’t tied to a particular filenamjstt'svell, a “generation control”.

Now you put all this into a file called something likk.xml , (or just copy it from thexml directory) and run Hoffman
like this:

C> hoffman -g kk.xml

Initializing tablebase

Checking futuremoves...

All futuremoves handled under move restrictions
Intra-table propagating

Pass 0 complete; 840 positions processed
Pass 1 complete; 0 positions processed

C>

There isn't much to see, of course. Thg " option meant “generate”. King vs king is nothing more than figuring out the
difference between illegal positions and draws. But this information is impipi@cause it's needed to back propagate
from the (slightly) more complex three piece endgames, like the king and gunelgiame whose XML configuration is
shown in Figure 2.

Notice the new “futurebase” line. This tells Hoffman where to get the informatlmout what happens when the black
king can capture the white queen, because a tablebase contains inforfoiaéxattly the piece configuration it is set up
for — nothing more, nothing less.

So put all this in a file calle@gk.xml , make sure th&k.htb file from the first run is present, and run Hoffman again:

C> ./hoffman -g -0 kgk.htb kgk.xml

Initializing tablebase

Back propagating from 'kk.htb’

Checking futuremoves...

All futuremoves handled under move restrictions
Intra-table propagating

Pass 0 complete; 131516 positions processed

<?xml version="1.0"?>
<IDOCTYPE tablebase SYSTEM "http://www.freesoft.org/so ftware/hoffman/tablebase.dtd">
<l-- Created by genctlfile.pl -->

<tablebase>
<index type="compact" symmetry="8-way"/>
<format><dtm bits="8"/></format>
<piece color="white" type="king"/>
<piece color="black" type="king"/>
<piece color="white" type="queen"/>
<futurebase filename="kk.htb"/>
<generation-controls>

<output filename ="kgk.htb"/>

</generation-controls>

</tablebase>

Figure 2:kgk.xml

Pass 1 complete; 364 positions processed

Pass 2 complete; 2448 positions processed
Pass 3 complete; 1352 positions processed
Pass 4 complete; 5012 positions processed
Pass 5 complete; 2956 positions processed
Pass 6 complete; 9064 positions processed
Pass 7 complete; 7480 positions processed
Pass 8 complete; 19964 positions processed
Pass 9 complete; 14144 positions processed

Pass 10 complete; 26164 positions processed
Pass 11 complete; 25484 positions processed
Pass 12 complete; 32064 positions processed
Pass 13 complete; 39908 positions processed
Pass 14 complete; 32104 positions processed
Pass 15 complete; 54052 positions processed
Pass 16 complete; 15000 positions processed
Pass 17 complete; 43800 positions processed
Pass 18 complete; 2680 positions processed
Pass 19 complete; 11300 positions processed
Pass 20 complete; 8 positions processed
Pass 21 complete; 56 positions processed
Pass 22 complete; 0 positions processed

C>

See, it's a little more interesting this time, right?

Now is a good time to introduce thei*” (information) option. Once you've got a bunch.btb files sitting around, and
you can’t remember which XML control file was used to generate whichlhalsks, there’s no need to panic. Everything
from the original XML configuration is saved into the resulting tablebas@gaiith a bunch more information, and all
of it can be retrieved from the tablebase using

C> hoffman -i kgk.htb
Hoffman $Revision: 1.10 $ $Locker: $

0 piece Nalimov tablebases found
<?xml version="1.0"?>
<IDOCTYPE tablebase SYSTEM "http://www.freesoft.org/so ftware/hoffman/tablebase.dtd">
<tablebase offset="0x0fe4">
<index type="compact" symmetry="8-way"/>
<format><dtm bits="8"/></format>
<piece color="white" type="king"/>
<piece color="black" type="king"/>
<piece color="white" type="queen"/>
<futurebase filename="kk.htb"/>
<tablebase-statistics>
<indices>59136</indices>
<PNTM-mated-positions>10152</PNTM-mated-positions>
<legal-positions>47136</legal-positions>
<stalemate-positions>115</stalemate-positions>
<white-wins-positions>44183</white-wins-positions>
<black-wins-positions>0</black-wins-positions>
<forward-moves>686465</forward-moves>
<futuremoves>2838</futuremoves>
<max-dtm>11</max-dtm>
<min-dtm>-11</min-dtm>
</tablebase-statistics>
<generation-statistics>
<host>debian.freesoft.org</host>
<program>Hoffman $Revision: 1.10 $ $Locker: $</program>
<args>./hoffman -g -0 kgk.htb kgk.xml </args>
<start-time>Sat Dec 16 02:11:28 2006 EST</start-time>
<completion-time>Sat Dec 16 02:11:36 2006 EST</completio n-time>
<user-time>2.782s</user-time>
<system-time>0.018s</system-time>
<real-time>8.052s</real-time>

. about 60 more lines deleted ...

</generation-statistics>
</tablebase>

In addition to the configuration information from the input XML file, the progralso added two new sections when
it created the tablebase tablebase-statistics andgeneration-statistics . The first reports various
interesting information the program determined about the tablebase, shiolv asany total indices there are, how many
correspond to legal chess positions, how many white mates, or black mastalemnates there are, etc. The second
reports information about the actual generation of this tablebase, like iwbesured, which version of the program was
used, and which computer actually computed it.

OK, so what's next? Aftekk.xml andkgk.xml ,thenyou can easily understakit.xml , kbk.xml andknk.xml
Once all five of these are processed, you're now ready to kpkdkml (Figure 3).

Notice we've added a new type @iturebase = — pawn promotion. Hoffman has to know what happens after that
pawn transforms into a queen, rook, bishop, or knight to be able to stadelrwhat happens to the pawn! Note also that
we can no longer use “8-way” symmetry, although we can still use a 2-yraynetry, since pawns don't care if they’re
on the right or left hand side of the board.

It's starting to get more complex, right? So how do | know there isn’'t a budl iof &his complexity? Well, my most
important blunder check is to verify the program’s operation against thienb\atablebases. You can do this, too. If
you download the appropriate Nalimov tablebases from the Internet (indkis the two KPK files), you can verify

<?xml version="1.0"?>
<IDOCTYPE tablebase SYSTEM "http://www.freesoft.org/so ftware/hoffman/tablebase.dtd">
<l-- Created by genctlfile.pl -->

<tablebase>
<index type="compact" symmetry="2-way"/>
<format><dtm bits="8"/></format>
<piece color="white" type="king"/>
<piece color="black" type="king"/>
<piece color="white" type="pawn"/>
<futurebase filename="kk.htb"/>
<futurebase filename="kgk.htb"/>
<futurebase filename="krk.htb"/>
<futurebase filename="kbk.htb"/>
<futurebase filename="knk.htb"/>
<generation-controls>

<output filename ="kpk.htb"/>

</generation-controls>

</tablebase>

Figure 3:kpk.xml

that Hoffman’s results are identical to Nalimov’s using the * (verify) and “-n directory” (location of Nalimov files)
options, like this:

C> ./hoffman -v -n Nalimov/ kpk.htb
Hoffman $Revision: 1.10 $ $Locker: $
5 piece Nalimov tablebases found
Loading 'kpk.htb’

Verifying tablebase against Nalimov

C>

There were no complaints, so that means everything verified OK.

So now you've got all of the three piece tablebases. Ready to try a feceD Figure 4 ikgkg.xml

Notice several things. First, we no longer speéikyhtb as a futurebase. We're only interested in the single captures
that lead out of the tablebase we're buildirkdx.htb has already been used to bukigk.htb |, so its data is in there.
Two queens can’t be taken on a single move, so all we need to worry sbehat happens if one of them is captured.
That's why | use th&qgk.htb tablebase. Notice that | use it twice, depending on which queen is beibgedpThe
kgk.htb tablebase has a white queen in it, anddbrs="invert" option to thefuturebase element handles
the case where the white queen is captured and we're left with a black quebe board.

You'll notice also that a four piece tablebase takes a good bit longer towtertigan a three piece one.
Oh, and | suppose having generating all of these tablebases, youaravworquery them, huh?

You do that using the probe (-p) option, followed by a list of tablebase@xeSve've got a small collection of simple
tablebases, it's easiest to just load them all, like this:

C> ./hoffman -p *.htb

<?xml version="1.0"?>
<IDOCTYPE tablebase SYSTEM "http://www.freesoft.org/so
<l-- Created by genctlfile.pl -->

<tablebase>
<index type="compact" symmetry="8-way"/>
<format><dtm bits="8"/></format>
<piece color="white" type="king"/>
<piece color="black" type="king"/>
<piece color="white" type="queen"/>
<piece color="black" type="queen"/>
<futurebase filename="kgk.htb" colors="invert"/>
<futurebase filename="kgk.htb"/>
<generation-controls>

<output filename ="kqgkg.htb"/>

</generation-controls>

</tablebase>

ftware/hoffman/tablebase.dtd">

4 piece
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading

Figure 4:kgkg.xml

Nalimov tablebases found
'kk.htb’
'knk.htb’
'knkn.htb’
'knkp.htb’
'kpk.htb’
'kpkp.htb’
'kpkg.htb’
'kgk.htb’
'kgkn.htb’
'kgkp.htb’
'kgkg.htb’
'kgkr.htb’
'krk.htb’
'krkn.htb’
'krkp.htb’
'krkr.htb’

FEN? 8/8/8/8/p7/8/1P4k1/2K5 b
FEN 8/8/8/8/p7/8/1P4k1/2K5 b - -
Index 12658437

Draw

Nalimov
g2h2
g2f2
0293
g2gl
g2f3
g2h3
g2fl
g2hl

score: DRAW

White moves and wins in 22
White moves and wins in 25
White moves and wins in 25
White moves and wins in 25
Draw

White moves and wins in 22
White moves and wins in 25
White moves and wins in 21

ada3 White moves and wins in 16
FEN or move? g2f3
FEN 8/8/8/8/p7/5k2/1P6/2K5 w - -
Index 12659332
Draw

Nalimov score;: DRAW

cldl Draw
clbl Draw
clc2 Draw
cld2 Draw
b2b3 Draw
b2b4 Draw

FEN or move? b2b4

FEN 8/8/8/8/pP6/5k2/8/2K5 b - b3
Index 12593797

Draw

Nalimov score: DRAW
393 White moves and wins in 15

f3e3 White moves and wins in 15
f3f4 White moves and wins in 23
f3f2 White moves and wins in 15
f3e4d Draw

f3g4 White moves and wins in 15
f3e2 White moves and wins in 15
f3g2 White moves and wins in 15
adxb3 Draw

FEN or move?
baccala@debian “/src/endgame$

At the “FEN?” prompt you want to enter a chess position in FEN notation gayuleave off the castling rights and
en passant square if you want). The program spits back its evaluatitwe gisition (if it has one), along with a list
of moves and how they evaluate. It has a history feature, so onceeytyped a FEN position in once, if you end the
program with a CNTL-D and not a CNTL-C, it will save everything to a higtiile, and you can retrieve it again on a
later run using the up arrow key.

After you've put a FEN position in, you get a “FEN or move?” prompt, whadllows you to enter moves and thus step
forward in the game. The move parser isn't very smart right now; youncake illegal moves pretty easily and there’s
no way to back up. The quirkiest thing at the moment is that if you want to piergou need to specify EXACTLY the
piece you're promoting into; “b7b8=Q"” is radically different from “b g

Thexml directory contains all of the XML configuration files needed to generatevtete set of three- and four-piece
tablebases. These files were createdjbgctlfile.pl , & Perl script that can also create control files for five- and
six-piece tablebases, though actually generating them can be quite degef@itomputergenalltb is a shell script
that will run Hoffman repeatedly on these files, and in the correct ottdigugh it may take several hours to run. Hoffman
has also been used to generate a complete set of five-piece tablebafss,thkes considerably longer.

Hoffman can thus duplicate much of the functionality of the Nalimov programisthad’s not all it can do. It can
also duplicate much of the functionality of Eiko Bleicher's Freezdtp(//www.freezerchess.com/). Aside
from Freezer's nice GUI, the only thing Hoffman lacks is the ability to use Nalitablebases as futurebases, which

<?xml version="1.0"?>
<IDOCTYPE tablebase SYSTEM "http://www.freesoft.org/so ftware/hoffman/tablebase.dtd">

<tablebase>
<prune-enable color="white" type="concede"/>
<prune-enable color="black" type="concede"/>

<index type="compact"/>

<format><dtm bits="8"/></format>

<piece
<piece
<piece
<piece
<piece
<piece
<piece
<piece
<piece

<prune
<prune

<generation-controls>

color="white"
color="black"
color="white"
color="white"
color="white"
color="white"
color="black"
color="black"
color="black"

color="white"
color="black"

type="king"/>

type="king"/>

type="pawn" location="a4"/>
type="pawn" location="d4"/>
type="pawn" location="f4"/>
type="pawn" location="d5"/>
type="pawn" location="a5"/>
type="pawn" location="f5"/>
type="pawn" location="d6"/>
move="KxP" type="concede"/>
move="KxP" type="concede"/>

<output filename="lasker1901.htb"/>

</generation-controls>

</tablebase>

Figure 5:lasker1901.xml

matters because 6 piece Nalimov tablebases are available on-line, while delyeSablebases are currently available
for Hoffman. For example, here is a 1901 composition by Lasker and Redith used as a demo on the Freezer website:

The Hoffman XML configuration for this problem (Figure 5), is in thal directory adasker1901.xml . Several
new features in the configuration should be apparent.

First, note the neviocation param
actually specify a list of multiple squares, such agd “a5 a6 a7 ”; we'll see an example of this later.

eter that can be specified for a piece to nail it down to a particularépo can

Note also the disappearance of fturebase element; it's been replaced by a pair mune statements. The
program pretty much has to have eitfigiurebase or prune statements in order to figure out how to handle things
like captures. In this case, we don't use futurebases at all (so thigas@d-alone analysis), and instead tell Hoffman to
regard any pawn capture as an immediate victory for the capturing sides @iedoncede part).

Finally, let me point out th@arune-enable elements at the beginning of ti@blebase section. They don’t do
very much, but they're very important because the program will refugeocess this tablebase without them. They're
there because it's easy to lose track of pruning statements if they get imsidd futurebases. You could easily use
a pruned futurebase to build a tablebase that wouldn’t be accuratthablso wouldn’t be apparent just from look-
ing at the tablebase configuration. That's why frane-enable elements are there. The program will refuse to
allow any pruning statement, or pruned futurebase, unless there is a mygtohire-enable at the beginning of the
tablebase section. This prevents “hidden” prunes from slipping into an analysis btak&és As their name suggests,
theprune-enable elements “turn on” pruning; the program won't prune unless they'reethe

OK, so by now we know how to generdtesker1901.htb (hoffman -g lasker1901.xml , right?), and we
can probe the resulting tablebase for the original problem position:

C> ./hoffman -p lasker1901.htb
Hoffman $Revision: 1.10 $ $Locker: $
0 piece Nalimov tablebases found
Loading ’lasker1901.htb’
FEN? 8/k7/3p4/p2P1p2/P2P1P2/8/8/K7 w
FEN 8/k7/3p4/p2P1p2/P2P1P2/8/8/K7 w - -
Index 2368
White moves and wins in 14
Can't find Nalimov tablebase

Kalbl White wins in 14

Kala2 Draw

Kalb2 Draw
FEN or move?
C>

So what's the point? Can White win in 14 moves? No. White@apture a black pawn in 14 moves, but only if he plays
Kb1! Any other move would allow Black to “draw”, i.e, to prevent White froapturing a pawn without allowing Black
to capture first. In fact, those other two moves allow Black to prevent Whita frapturing at all, but it's important to
note that this Hoffman analysis doesn’t guarantee that, since Black migtiil&¢o “win” by capturing a pawn. White
might be able to capture a pawn, just not before Black can.

Question: What changes to the configuration would allow us to prove that Black cdacincompletely prevent White
from making any capture after a move like Ka2?

Answer: Change the blackrune-enable andprune elements frontoncede todiscard . Now the analysis will
not consider any black captures, and the only kind of “draw” will be thia¢ completely prevents white from making any
kind of capture. There is one gotcha, however. White might put black osdipn where hisasto capture a pawn, but
the new analysis would regard this as a stalemate. To avoid this problem, yold siiso add a third pruning element:
<prune color="white" move="stalemate" type="concede"/>

Here’s another example, also from the Freezer website:

It's a fortress. We're White, and we’re out to show that we can drawgbstion. My Hoffman analysis is in the
“fortress *.xml ” files in thexml directory. You need to have several of the four-piece tablebasesrboiitler to
process them. I’'m not going to copy them all into this document; I'll just ask tp study them on your own while |
point out some salient features.

Notice howfuturebase andprune statements can be used together in a single configuration file (in case y®u wer
wondering). Notice how wildcards can be usedpmine statements. Notice how a piece can be restricted to more
than one square. Notice how comments can be put into XML configuratiam$y@és, there are some alternate ways to
specifyindex andformat ; see the Reference Guide for more details on these and other Hoffmareldvtients.

Here’s a final example that neither Nalimov nor Freezer can handle.e drertoo many pieces in play for Nalimov
(eight), and the pawn captures are too complicated for Freezer. Thisitiopds7 from Reuben Fine's book “Basic
Chess Endings™:

The XML configuration (Figure 6) iine67.xml , but this file can not be processed directly by Hoffman. Why? Note
that pawn captures are possible from this tablebase (the plus signsloc#tien attributes mean to advance the
pawn as far as it can go), yet we have not specifiedfatyrebase or prune elements to handle those captures.
Attempting to run Hoffman on this file will generate an error:

C> ./hoffman -0 fine67.htb -g fine67.xml
Hoffman $Revision: 1.10 $ $Locker: $

<?xml version="1.0"?>
<IDOCTYPE tablebase SYSTEM "http://www.freesoft.org/so ftware/hoffman/tablebase.dtd">
<l-- Diagram 67 from Rubin Fine’s "Basic Chess Endings" -->

<tablebase>
<prune-enable color="white" type="concede"/>
<prune-enable color="black" type="concede"/>
<index type="compact"/>
<format><dtm bits="8"/></format>
<piece color="white" type="king"/>
<piece color="white" type="pawn" location="b3+"/>
<piece color="white" type="pawn" location="c2+"/>
<piece color="white" type="pawn" location="d3+"/>
<piece color="black" type="king"/>
<piece color="black" type="pawn" location="b5+"/>
<piece color="black" type="pawn" location="c7+"/>
<piece color="black" type="pawn" location="d5+"/>
<futurebase filename="kpk.htb"/>
<futurebase filename="kpk.htb" colors="invert"/>
<prune color="white" type="concede" move="P=?"/>
<prune color="black" type="concede" move="P=?"/>
</tablebase>

Figure 6:fine67.xml

Malloced 40MB for tablebase entries

'kpk.htb: Too many missing pieces in futurebase
Futurebase preload failed: 'kpk.htb’

C>

Instead of using Hoffman directly, we need to run “pawngenfioe67.xml , and it's best to do this in a directory
empty except for the futurebagpk.htb . Pawngen will consider all possible pawn movements, captures, and pro-
motions, and output a series of interlinked control files that Hoffman caocegs. Obviously, considering all possible
promotions in this case would result in positions with multiple queens that would kessiigpe for Hoffman to process.
Pawngen, however, does honor grane elements. For this example, pawngen ignored all promotion possibilities (note
theprune elements) and created 173 control files, along withekefile listing the interdependencies between them.
Run the actual Hoffman analysis by typing “make”. Both Perl (neededrigpauwngen) and make are fairly standard on
Linux and other UNIX variants, but neither are included in the Hoffmanitistion. On Microsoft systems, I've used
the cygwin distribution (which includes both programs) successfully.

“make” runs Hoffman, yes, 173 times and produces a directory full débatses. Once this is done, we use Hoffman to
probe the tablebases:

C> ./hoffman -p * htb

Hoffman $Revision: 1.10 $ $Locker: $
0 piece Nalimov tablebases found
Loading 'Kb3b3c4Kd5.htb’

Loading 'Kb3b4c4K.htb’

Loading 'Kb3b4d3Kc7.htb’

Loading 'Kb3b4d3Kd5c¢7.htb’

Loading 'KKd6c4b5.htb’
Loading 'KKd6c4.htb’
FEN? 8/2p5/3k4/1pl1plK2/8/1P1P4/2P5/8 w
FEN 8/2p5/3k4/1pl1plK2/8/1P1P4/2P5/8 w - -
Index 12369740 (Kb3c2d3Kd5c7b5.htb)
White moves and wins in 21
Can't find Nalimov tablebase
Pc2c3 Black moves and wins in 16
Pc2c4 Black moves and wins in 19
Pb3b4 White wins in 21
Pd3d4 Draw

Kf5g5 Black moves and wins in 13
Kf5f6 Draw
Kf5f4 Draw
Kf596 Black moves and wins in 13
Kf5g4 Black moves and wins in 23

FEN or move? d3d4
FEN 8/2p5/3k4/1plpl1K2/3P4/1P6/2P5/8 b - -
Index 12369849 (Kb3c2d3Kd5c7b5.htb)
Draw
Can't find Nalimov tablebase
Pb5b4 Draw
Kd6cb White moves and wins in 21
Kded7 White moves and wins in 36
Kdée7 White moves and wins in 20
Pc7c6 White moves and wins in 20
Pc7c5 White moves and wins in 20
FEN or move?

This analysis confirms Fine’s analysis that b4 is White’s only winning move irpthégtion, although the pruning in the
Hoffman analysis only guarantees that White can force a queen belfack &n. In particular, d4 only draws because
Black has the recourse b4 which allows him to blockade the position.

Of course, we'd really like to know if White can win, not just force a queénmore sophisticated analysis (Figure
7) isfine67a.xml . Notice thepawngen-condition attributes on two of th@rune elements. These attributes
specify Perl expressions that will be evaluated by pawngen to selgciivtude or exclude th@rune elements. In
this example, we want to allowsingle white queen promotion, so we unconditionally discard all white promotions into
rooks, knights, or bishops, as well as white queen promotions if a whitenggealready present. Thus we’ll consider
positions with a single white queen, but not two. In addition to promotions, aletl concede some other moves to black
that should simplify our analysis somewhat. We never want to allow black toireafhe white queen, so we concede
“?xQ", and there’s no reason to allow black to capture the last white pawn if whga'hqueened, so we selectively
prune “?xP”. The syntax of this last statement is somewhat confusing unless you tkratthe Perl operatd@# counts
starting at zero, sé#white _pawns==0 actually tests if there is a single white pawn present.

Pawngen, when run dime67a.xml , produces 229 control files, of which 78 contain queens, so this ansies
longer to run thariine67.xml (half a day instead of an hour). When complete, its output tablebase®aarehed
for the original position:

C> ./hoffman -p *.htb
Hoffman $Revision: 1.10 $ $Locker: $

<?xml version="1.0"?>
<IDOCTYPE tablebase SYSTEM "http://www.freesoft.org/so
<l-- Diagram 67 from Rubin Fine's "Basic Chess Endings" -->

<tablebase>
<prune-enable color="white" type="discard"/>
<prune-enable color="black" type="concede"/>
<index type="compact"/>
<format><dtm bits="8"/></format>
<piece color="white" type="king"/>
<piece color="white" type="pawn" location="b3+"/>
<piece color="white" type="pawn" location="c2+"/>
<piece color="white" type="pawn" location="d3+"/>
<piece color="black" type="king"/>
<piece color="black" type="pawn" location="b5+"/>
<piece color="black" type="pawn" location="c7+"/>
<piece color="black" type="pawn" location="d5+"/>
<futurebase filename="kpk.htb"/>
<futurebase filename="kpk.htb" colors="invert"/>
<futurebase filename="kgk.htb"/>
<futurebase filename="kqgkp.htb"/>
<futurebase filename="kqpk.htb"/>
<prune color="white" type="discard" move="P=Q"
pawngen-condition="grep(/Q/,@white_pieces)==1"/>
<prune color="white" type="discard" move="P=[RNB]"/>
<prune color="black" type="concede" move="P *=?"[>
<prune color="black" type="concede" move="?xQ"/>
<prune color="black" type="concede" move="?xP"
pawngen-condition="grep(/Q/,@white_pieces)==0 and $#w
</tablebase>

ftware/hoffman/tablebase.dtd">

hite_pawns==0"/>

Figure 7:fine67a.xml

0 piece Nalimov tablebases found
Loading 'Kb3b3c4Kd5.htb’

Loading 'Kb3b4c4K.htb’

Loading 'Kb3b4d3Kc7.htb’

Loading 'KQKd5d4.htb’
Loading 'KQKd6b5.htb’
Loading 'KQKd6c4.htb’
FEN? 8/2p5/3k4/1p1plK2/8/1P1P4/2P5/8 w
FEN 8/2p5/3k4/1pl1plK2/8/1P1P4/2P5/8 w - -
Index 12369740 (Kb3c2d3Kd5c7b5.htb)
White moves and wins in 27
Can't find Nalimov tablebase
Pc2c3 Black moves and wins in 11
Pc2c4 Black moves and wins in 5
Pb3b4 White wins in 27
Pd3d4 Draw

Kf5g5 Black moves and wins in 10
Kf5f6 Draw
Kf5f4 Draw
Kf5g6 Black moves and wins in 10
Kf5g4 Black moves and wins in 15

FEN or move?

Again, we show a white win witlb4. This time, however, we know that this is actually a white and not just a
gueening solution.

fine67b.xml isaslight variant on this analysis that usestibsic format type and an appropriaetries-format

to generate &itbase — a tablebase that records only win, lose, or draw information, withoutidiarettes we've seen
so far in all of these examples. A bitbase is more compact to store, fastenévates and (thanks to the custom
entries-format) uses about half as much memory during generation. Its generation is ategpmedictable, as
there is no chance of overflowing itim field, which would result in a fatal error fairly deep into its calculation.

Pawngen currently accepts only a subset of Hoffman’s XML syntax —ooation attributes are allowed on any
non-pawns, and pawns must hdeeation attributes specifying a specific starting square followed by a plus sign.
Despite these limitations, it is a key auxiliary tool that allows complicated pawn t@nsto be managed with a single
control file.

