
The Hoffman Reference Guide

Brent Baccala

September 13, 2018

Hoffman is a program to solve chess endgames using retrograde analysis, which is much different from conventional

computer chess programs. Retrograde analysis is only useful in the endgame, runs very slowly, and produces enormous

amounts of data. Its great advantage lies in its ability to completely solve the endgame. In a very real sense, a retrograde

engine has no “move horizon” like a conventional chess engine. It sees everything. For those not up on Americana, the

program is named after Trevor Hoffman, an All Star baseball pitcher who specializes in “closing” games. It was written

specifically for The World vs. Arno Nickel game.

Hoffman uses XML extensively both for configuring its operation and for labeling the resulting tablebases. In fact, a

completed Hoffman tablebase (typically in an .htb file) is just a gzip-ed file that contains an XML prefix followed

by binary tablebase data (in a format specified by the XML). Basically, to operate Hoffman, you write an XML file that

specifies the analysis you want done, then feed it to the program. As output, it produces a modified version of the XML

input that includes binary tablebase data appended at the end.

1 Parallel Processing with Hoffman

A Hoffman analysis can be quite compute-intensive. The program can be compiled to use POSIX threads (if available),

with the number of threads specified at run-time using the -t option. The program is also designed to use multiple

computers in parallel, all working simultaneously on an analysis. This is accomplished by breaking the analysis up into

smaller pieces, each with its own XML configuration file.

2 Propagation tables

A Hoffman analysis can also be quite space-intensive. Since its memory utilization pattern is basically random, Hoffman

will begin to swap dramatically and suffer a disastrous drop in performance once its working set size exceeds the ma-

chine’s available memory. To alleviate this, the program can be operated in a mode where it fills a series of propagation

tables, writing each one out to disk when full, then reads them back in sequentially during the next pass. Although less

efficient than when the working set can be contained in memory, propagation tables allow the program to build tablebases

of essentially unlimited size with no swapping and reasonable CPU utilization. This mode is activated at run-time by

specifying the size of the propagation tables (in MB) with the -P switch. Temporary files will be written to the current

directory.

For example, the command hoffman -g -t 2 -P 1024 kqqkqq.xml will trigger a Hoffman generation run

with two threads, using one gigabyte (1024 megabytes) of memory.



3 XML Syntax

The root XML element in a Hoffman tablebase is always <tablebase>. Its only attribute (offset) is added by

the program, should not be supplied by the user, and indicates a hexadecimal byte-offset into the file where the binary

tablebase data begins.

Within a <tablebase> the following elements may occur in the listed order (deprecated elements and attributes are

not documented):

3.1 <prune-enable color="white|black" type="concede|discard"/>

Specifies which kinds of pruning elements will be allowed in this tablebase and its futurebases. Both attributes are

required. concede means wins may be conceded to the named color; discard means moves by the named color may

be discarded. At most one prune-enable can be specified for each color. No prune-enable element is required,

however, no prune elements are allowed without one and no futurebases may possess additional prune-enable

elements beyond those specified for the current tablebase.

3.2 <variant name="normal|suicide"/>

The optional <variant> element specifies which version of the rules of chess apply to this tablebase.

Default: normal

3.3 <index type="naive|naive2|simple|compact|no-en-passant|combinadic

|combinadic2|combinadic3|combinadic4|pawngen"

symmetry="1|2|4|8"/>

The <index> element specifies the algorithm that will be used to compute the index numbers in the tablebase; i.e, the

algorithm that will convert board positions into tablebase offsets and vice versa. It typically is not specified by the user

(but can be).

naive uses 26n+1 indices to store positions for n pieces. It assigns a single bit for the side-to-move flag, then assigns

6 bits to each piece, which is used to encode a number from 0 to 63, indicating the piece’s position on the board.

naive2 Differs from naive in its handling of multiple identical pieces, which it stores as a base and an offset, thus

saving a single bit. Currently, only pairs of identical pieces are handled; a fatal error will result if there are more

than two identical pieces.

simple Like naive, but only assigns numbers to squares that are legal for a particular piece. Slower to compute than

naive, but more compact for tablebases with lots of movement restrictions on the pieces.

compact A combination of the delta encoding used for identical pieces in naive2, the encoding of restricted pieces

used in simple, plus a paired encoding of the kings so they can never be adjacent.

no-en-passant An enhancement of compact that uses the paired encoding scheme for pawns restricted to the

same file. Since they can never pass each other, we can encode them as if they were an identical pair, then assign

their colors in the same order they were originally specified. En passant significantly complicates this and can not

be handled with this scheme.



combinadic An enhancement of naive2 that can encode more than two identical, overlapping pieces by using a

combinadic encoding scheme (see the wikipedia page “Combinatorial number system”).

combinadic2 Like combinadic, but later pieces wholly contained within the semilegal range of earlier pieces are

encoded using fewer positions. Piece order is significant. No attempt is made to reduce the encoding of pawns.

combinadic3 Like combinadic2, but pawn encodings are also reduced, by reducing its encoding value (with

en-passant factored in), while using its board position to reduce other pieces..

combinadic4 Like combinadic3, but color symmetric tablebases, those invariant under swapping colors, are

optimised by removing the side-to-move flag, cutting the tablebase size in half. (ex: kqkq is color symmetric, but

kqkr is not)

pawngen Like combinadic4, but pawns are handled separately by building a table of all possible pawn positions

that can result from a given initial pawn configuration.

The optional symmetry attribute can be used to encode multiple positions using a single entry, but its utility depends

upon the exact analysis being done. A tablebase with no pawns and no movement restrictions can be encoded with 8-way

symmetry, since the board can be rotated about a horizontal, vertical, or diagonal axis without affecting the behavior

of the pieces. A tablebase with pawns can utilize at most 2-way symmetry, since only a reflection about a vertical axis

preserves piece behavior. A tablebase with restrictions on the positions of the pieces (say, frozen pawns) can not use any

symmetry at all. Not all symmetries are compatible will all index types; for example, 8-way symmetry can not be used

with naive or naive2 index types.

Default: combinadic4 with automatically selected symmetry, unless a pawngen element is present in the XML,

which triggers pawngen

3.4 Tablebase format

The next three elements specify the format of the tablebase entries. At most one of them can be specified.

<dtm bits=integer/> specifies a distance to mate metric. Zero is used for draws, -1 is used for positions where the

moving side is checkmated, and 1 is used for positions where the moving side can capture the opposing king, so an eight

bit dtm field can record mate-in distances up to 126. If a field size is not specified, it is selected automatically.

<dtc bits=integer/> specifies a distance to conversion metric, which is the number of moves required before reach-

ing a different tablebase. Zero is used for draws, -1 is used for positions where the moving side is checkmated, and 1 is

used for positions where the moving side can capture the opposing king, so an eight bit dtm field can record distances up

to 126. If a field size is not specified, it is selected automatically.

<basic/> specifies a bitbase where two bits are used for each position, and no distance information is stored — only

an indication of the ultimate outcome (win, lose, or draw). Such a format is more compact and requires less time to

generate, but requires more effort to use, since care must be taken to avoid loops when following winning lines.

<flag type="white-wins|white-draws"/> specifies a bitbase where only a single bit is used for each posi-

tion. white-draws includes both winning and drawing positions for white, so it is essentially NOT black-wins.

Default: DTM with automatically selected field size.



3.5 <piece color="white|black" type="king|queen|rook|bishop|knight|pawn"

location="string"/>

Multiple piece elements are used to specify the chess pieces present in the tablebase. color and type are required

and should be obvious. The ordering of piece elements is significant in that it directly affects the index algorithm, but

there is no user-visible effect of the ordering.

The optional location attribute restricts the board positions available to this piece. It should be a list of squares, in

algebraic notation, on which the piece is to be allowed. A single square results in a completely frozen piece. In addition,

pawns may use an additional syntax consisting of a single starting square followed by a plus sign, indicating that the

pawn may move forward as far as possible. This can be used, for example, to locate a black pawn on "a7+ and a white

pawn on "a2+", indicating that both can move forward, but they can not “pass” each other.

3.6 <pawngen white-pawn-locations="string" black-pawn-locations="string"

white-pawns-required="number" black-pawns-required="number"

white-queens-required="number" black-queens-required="number"

white-captures-allowed="number" black-captures-allowed="number"/>

Pawn configurations can be specified using a pawngen element instead of piece elements. A set of starting pawn

locations is specified for each color using *-pawn-locations attributes, and all possible pawn moves from that

initial configuration are calculated. Since the number and types of pieces is fixed for each run of the program, the

*-pawns-required attributes must be specified to indicate how many pawns of each color are allowed. Optionally,

the *-queens-required attributes can specified to force consideration of positions where a certain number of pawns

have queened, and the *-captures-allowed attributes include consideration of positions where a certain number

of non-pawn pieces have been captured (pawn captures are already considered).

The auxiliary Perl script pawngen can accept control files without *-pawns-required attributes, and generates

new, interlinked control files with the required attributes added.

3.7 <futurebase filename="string" colors="invert"/>

One or more futurebases may be specified with this element. A filename must be specified to locate a futurebase,

which must be another tablebase, in either Hoffman, Nalimov, or Syzygy format. The path to a Nalimov tablebase is

ignored; it must be in the directory specified on the command line using the -N option.

The futurebase must be related to the current tablebase in one of the following ways:

It has exactly the same piece configuration as the current tablebase, and corresponds to movement by one of the restricted

pieces, i.e, the current tablebase has a white pawn frozen on e4 and the futurebase has a white pawn frozen on e5.

It has exactly the same piece configuration as the current tablebase except that a single piece is missing, i.e, a capture

occurred.

It has exactly the same piece configuration as the current tablebase except that a single pawn has been replaced with a

knight, bishop, rook or queen, i.e, a pawn promoted.

It has exactly the same piece configuration as the current tablebase except that a single pawn has been replaced with a

knight, bishop, rook or queen, and a single non-pawn of the opposite color has been removed, i.e, a pawn captured

and promoted in the same move.



The option colors="invert" attribute may be specified to indicate that the piece colors of the futurebase should be

inverted as it is processed. This precludes the need to calculate, say, a tablebase with a white queen and a black rook

as well as a tablebase with a black queen and a white rook. The first may be used (with this option) as a futurebase to

calculate a tablebase with two white rooks and a black queen.

Note: Any futurebase prune-enable elements must be a subset of the current tablebase’s prune-enable elements.

3.8 <prune color="white|black" move="string" type="concede|discard"/>

Futuremoves not handled by specifying futurebases must be pruned using one or more of these elements, or an error

will result. The move is specified using regular expression syntax to match a move in a subset of standard algebraic

notation. All of the following strings are examples of legal move strings in a prune element: Pe5, P=Q, RxQ, PxR=Q.

The following regular expressions would all match Kd4: Kd?, K?4, K[a-d]4, K*. The type attribute specifies

what should be done with matching moves: treated as wins for the moving side (concede), or completely ignored

(discard). If multiple prune elements match a particular move, it is a warning if they have the same type, a fatal

error if their types differ.

A single prune element may be specified with move="stalemate" and type="concede". In this case, the

color attribute indicates to which side stalemates should be conceded as wins.

Note: prune elements do not affect moves within a tablebase. Specifying a prune element that only matches moves

within a tablebase will do nothing.

Note: If a prune element is specified for a futuremove handled by a futurebase, then the futurebase takes precedence.

However, this case is handled by tracking every futuremove in every position, so it is possible to specify futurebases that

handle a subset of the possible futuremoves, then use prune elements to handle the rest by default.

Note: prune elements are only allowed if they match a prune-enable element. If no prune-enable elements

were specified, then no prune elements will be permitted.

Note: Earlier versions of Hoffman allowed a pawngen-condition attribute that is no longer supported.

3.9 Generation Controls

These elements are all optional, but if output is not specified, an output filename must be specified on the command

line using the -o switch.

3.9.1 <output filename="string"/>

At most a single output element should be used to specify where the finished tablebase should be written.



3.10 <tablebase-statistics> ... </tablebase-statistics>

This element is added by the program and should not be specified in the input. It contains statistics relating to the finished

tablebase.

Element Interpretation

indices Total number of entries in the uncompressed tablebase

PNTM-mated-positions Total number of positions in which player not-to-move is mated; i.e, illegal

positions in which a kind can be immediately captured

legal-positions Total number of legal positions; i.e, total number of entries, minus illegal en-

tries where two pieces occupy the same space, minus PNTM-mated positions

stalemate-positions Stalemate (not draw by repetition) positions

white-wins-positions Positions from which White can force a win

black-wins-positions Positions from which Black can force a win

forward-moves Total number of forward moves from positions in this tablebase (including

futuremoves)

futuremoves Total number of forward moves from positions in this tablebase into future-

bases or pruned

max-dtm Largest distance to mate of all positions in this tablebase

min-dtm Smallest distance to mate of all positions in this tablebase, i.e, a negative num-

ber indicating the longest forced loss

3.11 <generation-statistics> ... </generation-statistics>

This element is added by the program and should not be specified in the input. It contains statistics relating to the program

run that generated the tablebase.

Element Interpretation

host Hostname of system that generated the tablebase

program Name and version of the program that generated the tablebase

args Command line used for the generation run

start-time Time the program run initially started

completion-time Time the program run finally ended

user-time CPU time used by the run in user space

system-time CPU time used by the run in system calls

real-time Wall clock time used by the run

page-faults Number of times the program had to wait for a memory page to be swapped in

from disk

page-reclaims Number of times the program reclaimed a page from the free list; this will

typically be program instruction pages

proptable-writes If proptables are in use, the number of proptables written to disk

proptable-write-time If proptables are is use, the total real time required for all proptable writes

pass Per-pass statistics, including real-time and user-time



4 Some Confusing Error Messages

4.1 Futurebases can’t be less symmetric than the tablebase under construction

Symmetric tablebases collapse multiple positions into one, so futurebases must have the same symmetry (at least), or the

futurebase might handle differently two positions that the more symmetric tablebase treats as one.

4.2 Doubled pawns must (currently) appear in board order in piece list

Currently, doubled pawns using “plus” locations (ex: location="a2+") on the same file must have their piece

elements listed in the XML in the order that the pawns appear on the board, counting in algebraic notation from row 1 to

row 8. I mean, row 2 to row 7.

4.3 Piece restrictions not allowed with symmetric indices (yet)

You can’t specify an index symmetry attribute and also specify piece location attributes, even if the restric-

tions on the piece locations might be compatible with the requested symmetry.

4.4 Non-identical overlapping piece restrictions not allowed with this index type

For the naive, naive2, and simple index types, you can’t specify two identical pieces with different location

restrictions unless those restrictions are completely distinct. For example, you can’t have a free white rook and another

white rook restricted to the a-file. If you think about it, this situation would allow the rooks to “trade places” — both

could move to the a-file and then either one could move off. The simpler index types can’t handle this situation. You

could, however, have a white rook restricted to the a-file and another restricted to the d-file (or use a more sophisticated

index type, like compact).

4.5 Futurebase doesn’t match prune-enables!

Remember that futurebase prune-enable elements must be a subset of the current tablebase’s prune-enables.

4.6 No futurebase or pruning for ...

Futuremoves not handled ...

If one or more futuremoves are not handled by specifying either a futurebase or a prune statement, then a fatal error will

result either immediately or after the initialization pass. To aid in diagnosis, the error message includes the FEN of the

offending position.

4.7 pawngen doesn’t support output elements in generation-controls

The pawngen script automatically generates all of its filenames. Remove the output element. After generation, all of

the resulting htb files can be loaded together into Hoffman’s probe mode.


