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Abstract

The author has developed a simple technique for finding non-separable
solutions of partial differential equations. As an illustration of the method,
I derive a previously unknown exact solution to the simplest time-independent
Schrödinger equation for hydrogen. The solution is J0(2

√
x+ r) where J0

is the Bessel function J0, and the result can be easily verified using Math-
ematica (p. 11).

Introduction

An January 2023, I discovered a previously unknown solution to the simplest
Schrödinger equation for the hydrogen atom.

It turns out that this function:

Ψ = J0(2
√
x+ r) (1)

where J0 is the ordinary Bessel function J0, solves the simplest Schrödinger
equation for hydrogen:

−1

2
∇2Ψ− 1

r
Ψ = EΨ (2)

with E=0.

It does not, however, satisfy the global integrability condition required for it to
be a valid wavefunction, i.e, it is not in L2:

∫
|Ψ|2 <∞ (3)
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Therefore, it is only a pseudo-solution, since it satisfies the differential equation
but is not a valid wavefunction.

A “proof by Mathematica” is on page 11, and a direct manual proof in included
as an appendix.

This paper continues with an introduction to Schrödinger’s Equation for Hy-
drogen, then explains the solution technique used to discover (1) and concludes
with a discussion of generalizations and further research.

Schrödinger’s Equation for Hydrogen

The Schrödinger equation is the quantum mechanical analog of Newton’s sec-
ond law. Both Newton’s equation and Schrödinger’s equation describe the time
evolution of a system of particles interacting under the influence of forces. New-
ton’s classical second law F = ma describes the time evolution of the position
and velocity of each particle. Schrödinger’s quantum mechanical formulation
HΨ = i δ

δtΨ describes the time evolution of the wavefunction Ψ, which is a
complex-valued function of particle positions that encodes a probability density
function for the particle positions as |Ψ|2 and a probability density function for
the particle momenta as its Fourier transform |Ψ̂|2.

There is no one Schrödinger equation any more than there is one F = ma.
Each physical system under consideration gives rise to a different collection of
particles and interacting forces, and a different Hamiltonian operatorH. Indeed,
even the approximations we make strongly determine the form of the equation
for a given system.

The Hamiltonian operatorH, so named because of its connection to Hamiltonian
mechanics, is most typically given in the form H = T − V , where T is the sum
of the kinetic energy of all particles and V is the potential energy of the system,
due to its forces.

H = T − V

One of the simplest Schrödinger equations is for the hydrogen atom, considering
the electric force attraction between the nucleus and the electron, and ignoring
all other effects. It has the following form:

−1

2
∇2Ψ− 1

r
Ψ = i

δ

δt
Ψ
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where Ψ is the wavefunction, ∇2 is the Laplacian, and r is the distance between
the two particles. We use Hartree atomic units, a system of units in which four
fundamental physical constants1 are assigned the value of 1, in order to eliminate
the need for any physical constants in the equation. The unit of distance, in
particular, is Bohr radii, approximately half an angstrom (Å= 10−10 m). The
first term, − 1

2∇
2Ψ, is the kinetic energy operator, and the second term, − 1

rΨ,
is the potential energy term.

We can further simplify the general, time-dependent Schrödinger equation re-
stricting our attention to solutions that where the position and time dependence
can be separated. This restricts the solution to stable states of the hydrogen
atom, settles the wavefunction up to a multiple of eitE , where E is the state’s
energy in Hartrees (approximately 27 eV), and leads to the time-independent
Schrödinger equation for hydrogen:

−1

2
∇2Ψ− 1

r
Ψ = EΨ (4)

This equation is amenable to seperation of variables. Using spherical coordi-
nates, we write Ψ as follows:

Ψ = R(r)Y (θ, ψ) = R(r)P (θ)F (ψ) (5)

Substituting (5) into (4), and expanding the Laplacian ∇2 in spherical coordi-
nates, we obtain the following expansion2:

1

R

d

dr

[
r2
dR

dr

]
+ 2(Er2 + r) +

[
1

P sin θ

d

dθ

[
sin θ

dP

dθ

]
+

1

F sin2 θ

d2F

dψ2

]
= 0

The first part, dependant on r, is the radical equation, whose solutions are, in
general. hypergeometric functions, but which, in the case of specific energy val-
ues, simplify to polynomials in r times an exponential of r. It is these solutions,
combined with the solution of the second part of the equation (the colatitude
equation, solved by the associated Laguerre polynomials, and the azimuthal
equation), which have been known for a hundred years, and are hence referred
to as the classical solutions to hydrogen.

The associated energy levels are negative because these are bound states. Zero

1the reduced Planck constant, the elementary charge, the electron mass, and the Coulumb
constant

2hyperphysics
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Energy Wavefunction Shell
(Hartrees)

− 1
2 e−r 1s

− 1
8 (2− r)e−r/2 2s

xe−r/2 2p
ye−r/2

ze−r/2

− 1
18 (27− 18r + 2r2)e−r/3 3s

(6− r)xe−r/3 3p
(6− r)ye−r/3

(6− r)ze−r/3

energy would correspond to an electron and a proton at rest an (infinitely) large
distance apart.

The classical solutions are separable and square integrable and are each paired
with a negative energy value, of which − 1

2 is the lowest, and corresponds to the
1s or ground state.

Yet the existance of separable solutions leaves open the existance of non-separable
solutions. It is perhaps surprising that such a well-studied equation would have
fairly simple, previously undiscovered, non-separable solutions.

Solution Technique

The separation of variables step in (5) is an arbitrary assumption that discards
all non-separable solutions. By making a different assumption, we can hope to
find a non-seperable solution.

Let’s assume that wavefunction Ψ satisfies a second-order ODE in some as yet
unknown variable v:

a(v)
δ2Ψ

δv2
+ b(v)

δΨ

δv
+ c(v)Ψ = 0 (6)

We aim to parameterize our solution by a finite number of constants, so we
further restrict our ODE by requiring its coefficients to be linear polynomials
in v with constant coefficients:
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(a0 + a1v)
δ2Ψ

δv2
+ (b0 + b1v)

δΨ

δv
+ (c0 + c1v)Ψ = 0

a0, a1, b0, b1, c0, c1 ∈ C

(7)

Turning our attention to v, we (arbitrarily) select Cartesian coordinates, (ar-

bitrarily) add the radius r =
√
x2 + y2 + z2 to our list of coordinates, and

(arbitrarily) restrict v to be a first degree polynomial in these coordinates, with
constant coefficients:

v = v1x+ v2y + v3z + v4r

v1, v2, v3, v4 ∈ C
(8)

A constant term is excluded from v only because adding a constant to v would
not meaningfully affect the solution. An ODE w.r.t. x+3 has the same deriva-
tives as an ODE w.r.t x, and the coefficients would only be shifted by constants,
which could be absorbed into a0, b0, and c0, so excluding a constant term in
the polynomial for v simplies the system with no further loss of generality.

Rearranging (7) like this:

δ2Ψ

δv2
= − b0 + b1v

a0 + a1v

δΨ

δv
− c0 + c1v

a0 + a1v
Ψ (9)

substituting into (4) after expanding the Laplacian ∇2 in Cartesian coordinates,
using (8) for v, simplifying higher powers of r using r2 = x2+y2+z2, writing Ψ′

for dΨ
dv and collecting all terms on one side of an equality with zero, we obtain a

rational function in x, y, z, r,Ψ,Ψ′, E, a0, a1, b0, b1, c0, c1, v1, v2, v3, v4 with a 228
term numerator and an 18 term denominator. We ignore the denominator. The
numerator begins:

rΨ′x3v31b1+rΨ
′xy2v31b1+rΨ

′xz2v31b1+rΨ
′x2yv21v2b1+rΨ

′y3v21v2b1+ · · · (10)

We’re looking for constants E, a0, a1, b0, b1, c0, c1, v1, v2, v3, v4 that will solve
equation (10) for all values of x, y, z, r, Ψ, and Ψ′, so we collect like terms
in x, y, z, r, Ψ, and Ψ′, organizing equation (10) like this:

rΨ′x3
(
v31b1 + v1v

2
2b1 + v1v

2
3b1 + 3v1v

2
4b1

)
+ · · · (11)
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The expressions in parenthesis gives us a system of equations (only one is shown
in (11)) involving the E, vi, ai, bi and ci variables that, if satisfied, will yield a
solution to (4) in the form (7) and (8). Once duplicate equations are dropped,
the system has 34 equations.
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−2v1v4a1 + 2v1v4b0 = 0

4v1v3v4b1 = 0

4v1v3v4c1 = 0

4v21v4b1 + 4v22v4b1 + 2v23v4b1 + 2v34b1 = 0

2v21v4c1 + 4v22v4c1 + 4v23v4c1 + 2v34c1 − 4Ev4a1 = 0

4v1v2v4b1 = 0

4v1v2v4c1 = 0

2v1v4c0 − 2v1a1 = 0

v21v3c1 + v22v3c1 + v33c1 + 3v3v
2
4c1 − 2Ev3a1 = 0

−2v3v4a1 + 2v3v4b0 = 0

v21v3b1 + v22v3b1 + v33b1 + 3v3v
2
4b1 = 0

v21v4c1 + 3v22v4c1 + v23v4c1 + v34c1 − 2Ev4a1 = 0

v21v4b1 + 3v22v4b1 + v23v4b1 + v34b1 = 0

2v3v4c0 − 2v3a1 = 0

2v21v4b1 + 4v22v4b1 + 4v23v4b1 + 2v34b1 = 0

v21v2c1 + v32c1 + v2v
2
3c1 + 3v2v

2
4c1 − 2Ev2a1 = 0

−2v2v4a1 + 2v2v4b0 = 0

v31c1 + v1v
2
2c1 + v1v

2
3c1 + 3v1v

2
4c1 − 2Ev1a1 = 0

4v2v3v4b1 = 0

4v21v4c1 + 2v22v4c1 + 4v23v4c1 + 2v34c1 − 4Ev4a1 = 0

v21v4b1 + v22v4b1 + 3v23v4b1 + v34b1 = 0

v21v4c1 + v22v4c1 + 3v23v4c1 + v34c1 − 2Ev4a1 = 0

4v2v3v4c1 = 0

3v21v4c1 + v22v4c1 + v23v4c1 + v34c1 − 2Ev4a1 = 0

3v21v4b1 + v22v4b1 + v23v4b1 + v34b1 = 0

−2v24a1 + v21b0 + v22b0 + v23b0 + v24b0 = 0

−2a0 = 0

v31b1 + v1v
2
2b1 + v1v

2
3b1 + 3v1v

2
4b1 = 0

−2v4a0 = 0

4v21v4c1 + 4v22v4c1 + 2v23v4c1 + 2v34c1 − 4Ev4a1 = 0

v21v2b1 + v32b1 + v2v
2
3b1 + 3v2v

2
4b1 = 0

2v2v4c0 − 2v2a1 = 0

v21c0 + v22c0 + v23c0 + v24c0 − 2Ea0 − 2v4a1 = 0

4v21v4b1 + 2v22v4b1 + 4v23v4b1 + 2v34b1 = 0

(12)

The system (12) describes an algebraic variety in C11. We can better under-
stand its structure by decomposing it into a union of its irreducible subvari-
eties. Numerous algorithms to do this have been proposed and/or implemented
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[1, 3, 5, 7, 8, 9]. Due to the well-known correspondence between algebraic vari-
eties and ideals in a polynomial ring, algorithms for the primary decomposition
of ideals are well suited to decomposing an algebraic variety into its irreducible
subvarieties.

I performed this step using Sage, by constructing an ideal consisting of the
left hand sides of the equations in (12), and then calling a Sage method that
uses Singular’s implementation of the Shimoyama-Yokoyama algorithm[8] to
compute the ideal’s minimal associated prime ideals:

(c1, c0, b1, b0, a1, a0) (13a)

(a0, v4, v3, v2, v1) (13b)(
v21 + v22 + v23 , a1, a0, v4

)
(13c)(

v4c0 − b0, Ec0 − v4c1,−v24c1 + Eb0, b1, 2a1 − b0, a0, v3, v2, v1
)

(13d)(
v4c0 − b0, v

2
1 + v22 + v23 − v24 , c1, b1, a1 − b0, a0, E

)
(13e)

Each of these five ideals corresponds to an algebraic variety described by setting
all of the ideal generators equal to zero; the union of these five algebraic varieties
is the algebraic variety described by (12). Every point on each of these varieties
describes a set of constants that solve (12); each variety therefore describes a
family of solutions.

Several of these varieties solve the system of equations, but do not lead to a
meaningful solution to the differential equation (4). In brief,

(13a) sets all coefficients of the ODE to zero, so we discard it,

(13b) sets the variable v to zero, so we discard it,

(13c) sets the coefficient (a0 + a1v) of d2Ψ
dv2 in the ODE to zero, resulting in a

first-order ODE, so we discard it, too,

(13d) corresponds to the classical solutions (see below), and

(13e) gives us our new solution (see below).

How to understand ideal (13d)? We form a system of equations that describe
the corresponding variety by setting all of the ideal generators to zero. We
can always multiply (7) by a constant without affecting our result, so we can
set a1 = 1 without loss of generality. Likewise, we can multiply our variable
v by a constant and that will only change our coefficients by constants, and
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v1 = v2 = v3 = 0, so we can normalize by setting v4 = 1. This simplifies the
variety corresponding to ideal (13d) to the following system of equations:

a0 = 0 a1 = 1

b0 = 2 b1 = 0

c0 = 2 c1 = 2E

v4 = 1 v1 = v2 = v3 = 0

(14)

Substituting these values back into (7) and (8), we conclude that Ψ(v) is a
solution of (4) under these conditions:

v = r

vΨ′′ + 2Ψ′ + 2(1 + Ev)Ψ = 0
(15)

This is the classical radial equation obtained by seperation of variables3. We use
spherical coordinates, set Ψ = R(r)P (θ)F (ψ), and obtain the above equation
for R(r), though it is more commonly written in this form:

1

R

d

dr

[
r2
dR

dr

]
+ 2(Er2 + r) = l(l + 1) (16)

where l is the orbital quantum number, which can be zero. Set l = 0, v = r and
Ψ = R in (16) and expand out the derivative to obtain (15). The presence of
this solution was expected and won’t be commented on further.

Ideal (13e) was not expected, and contains our new solution. Again, we form
a system of equations by setting all of the ideal generators to zero. Again,
we can set a1 = 1, by the same logic as above. Let’s assume that our vi
coefficients are real (why?), so all of their squares must be positive, and since
v24 − v21 − v22 − v33 = 0, v4 must be non-zero. So we can normalize by setting
v4 = 1. That simplifies (13e) to this ideal:

(
c0 − 1, v21 + v22 + v23 − 1, v4 − 1, c1, b1, 1− b0, a1 − 1, a0, E

)
(17)

This ideal corresponds to the following system of equations:

3See Pauling and Wilson or http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/

hydrad.html
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E = 0

a0 = 0 a1 = 1

b0 = 1 b1 = 0

c0 = 1 c1 = 0

v4 = 1 v21 + v22 + v23 = 1

(18)

Substituting these values back into our ansatz, we conclude that Ψ(v) is a
solution of (4) under these conditions:

v
δ2Ψ

δv2
+
δΨ

δv
+Ψ = 0

v = v1x+ v2y + v3z + r

v21 + v22 + v23 = 1

(19)

The expression v1x+ v2y+ v3z is easily identified as a dot product between the
coordinate (x, y, z) and the unit vector (v1, v2, v3) (note that v21 + v22 + v23 = 1).
The direction of this vector is arbitrary, so we can orient the x-axis in this
direction and set (v1, v2, v3) = (1, 0, 0) without loss of generality.

We now have to solve a second order ODE:

vΨ′′(v) + Ψ′(v) + Ψ(v) = 0 (20)

Wolfram Mathematica[6] can now analyze this equation4 and find a solution
using the ordinary Bessel functions J0 and Y0:

In[3]:= DSolvex * y''[x] + y'[x] + y[x] ⩵ 0, y[x], x

Out[3]= y[x] → BesselJ0, 2 x  1 + 2 BesselY0, 2 x  2

Therefore, setting

Ψ = J0(2
√
x+ r) (1)

where x, y, z are Cartesian coordinates and r =
√
x2 + y2 + z2, we conclude

that (1) is an exact solution to (4), with E = 0.

4I originally used Wolfram Alpha; the Wolfram Language Engine can also be used.
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Verification

The result can be easily verified5 using Mathematica, as follows:

In[1]:= Psif := Psi[x, y, z]

In[2]:= r[x_, y_, z_] = Sqrt[x^2 + y^2 + z^2]

Out[2]= x2 + y2 + z2

In[3]:= eqn = - 1  2 * LaplacianPsif, {x, y, z} - 1 / r[x, y, z] * Psif ⩵ 0 

Out[3]= -
Psi[x, y, z]

x2 + y2 + z2
+
1

2
-Psi0,0,2[x, y, z] - Psi0,2,0[x, y, z] - Psi2,0,0[x, y, z] ⩵ 0

In[4]:= solx_, y_, z_ := BesselJ[0, 2 * Sqrt[x + r[x, y, z]]]

In[5]:= FullSimplifyeqn /. Psi → {x, y, z}  sol[x, y, z]

Out[5]= True

The Global Condition

As noted in the introduction, in order to be a valid wavefunction, (3) must
also be satisfied. The physical intuition lying behind this requirement is that
the square of the modulus |Ψ|2 is a probability density function and its global
integral must therefore be finite, as the total probability of the electron being
somewhere is finite. [4, §1.4]

(1) does not satisfy (3). This can be easily seen by inspecting Bessel’s original
definition of J0 [10, p. 19]:

J0(z) =
1

2π

∫ 2π

0

cos(z sin θ)dθ (21)

J0(z) is continuous everywhere on the real line and J0(0) = 1. Also, 2
√
x+ r is

continuous everywhere in R3 and is zero along the negative x-axis. These facts
imply that for any δ > 0 there exists an ϵ > 0 such that J0(2

√
x+ r) > 1− ϵ for

any point within a distance of δ from the negative x-axis. (uniform continuity?)

This implies that for a small sphere S of radius δ, centered on a point along the
negative x-axis,

5A manual verification is presented in an appendix
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∫
S

∣∣J0(2√x+ r)
∣∣2 dV >

4

3
πδ3(1− ϵ)

Since there are an infinite number of these small spheres (disjoint?),

∫
R3

∣∣J0(2√x+ r)
∣∣2 dV = ∞

and J0(2
√
x+ r) is not square integrable6.

Generalization

Any unit vector can be picked for (v1, v2, v3), so the distance in any direction
from the origin can be used in lieu of x, and any ordinary Bessel function can
be used:

Ψ = F (2
√
v1x+ v2y + v3z + r) (22)

where

v21 + v22 + v23 = 1

and F is any linear combination of the Bessel functions J0 and Y0.

By linearity of (4), any finite linear combination of functions of the form (22)
also solves (4).

The assumption that the vi coefficients are real was arbitrary.

Software

The program used to construct the system of equations is available here:
https://github.com/BrentBaccala/helium

It’s a Sage script that works fine with Sage 9.0 on Ubuntu 20.

6Peter Ulrickson (Catholic University) pointed out to me that this argument also implies
that Ψ is not in any Lp space except L∞.
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Use it to find ideal (13) by running Sage as follows:

load(’helium.sage’) # loads the script

prep_hydrogen(5) # select PDE:hydrogen and ansatz:5

init() # finish setting everything up

I=ideal(eqns_RQQ) # constuct ideal from equations

I.minimal_associated_primes()

Here are some other convenient variables and functions in the script:

A, B, C, V # trial forms of various polynomials

eq_a # the PDE in its original form

eq_a_convertField # the PDE modulo the ansatz

eq_a_reduceRing_n # the expanded numerator

R # polynomial ring over integers

F # fraction field of R

eqns_RQQ # system of equations to solve

Current Implementation Status

The algorithm presented above can be used to check any PDE to see if any of
its solutions can be expressed using an ODE structured according to a specific
ansatz. This technique is complementary to separation of variables, where we
check a PDE to see if any of its solutions can be expressed as a product of
factors, each depending on only a subset of the independent variables.

As my primary interest lies in quantum mechanics, I have investigated the PDEs
that model hydrogen and helium.

For hydrogen, the PDE is ∇2Ψ− 1
rΨ = EΨ

For helium, the PDE is ∇2
1Ψ + ∇2

2Ψ − 2
r1

− Ψ 2
r2

− Ψ 1
r12

Ψ = EΨ, where Ψ =

Ψ(r1, r2, r12) and ∇i is the Laplacian with respect to the ith electron. Ψ is
assumed to have no angular dependence, which has been known since at least
the time of Hylleraas to be a valid assumption for the ground state.

In both cases, I use Hartree atomic units to render the equations dimensionless.
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Conclusion

As we’ve seen, using a parameterized function space allows the use of algebraic
geometry techniques to check a PDE to see if a solution exists in that function
space. Doing so requires putting degree bounds on the various polynomials that
form the ansatz, in contrast to separation of variables, which puts no degree
bounds on the polynomials but requires the solution to be separable. As we’ve
seen, even a fairly simple ansatz not only recovered a known separable solution,
but also found a previously unknown solution that is not separable.

Currently, the primary barrier to successful execution of the algorithm is design
limitations in the various software packages used to execute it. For example, no
current Gröbner basis algorithms, to my knowledge, will fall back on using disk-
based storage once RAM becomes exhausted. Run times of weeks or months can
be expected when searching for truly unknown solutions to realistic problems,
but no such calculation is possible if the machine “runs out of memory”, even
though an ample disk-based backing store may be available.

Any PDE can be explored using this technique. For studying a non-linear PDE
such as Navier-Stokes, a different set of ansatzen formed from non-linear ODEs
might be advisable.

No theoretical treatment is currently available to predict when these ansatzen
might yield solutions. The discovery of a new result using such a simple ansatz
suggests, however, that even very modest degree bounds can yield solutions.

The main thrust of the author’s research, however, remains quantum mechanics
and the hope of an ODE-based solution to helium. As of May 2023, the author
continues to develop the software tools necessary to check helium ansatz 16.6,
in the hopes of finding a solution to helium’s ground state.

Draft Status

This paper is still a draft and is being updated regularly.

Contact

The author maintains a discussion page for this result on his personal blog at:

https://www.freesoft.org/blogs/soapbox/a-new-solution-of-hydrogen/
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Appendix: Manual Verification of the Result

For anybody wondering how Mathematica concludes that (1) solves (4), the
claim is that Ψ = J0(2

√
x+ r) = (J0 ◦ 2

√
v)(x+ r) satisfies:

(
δ2

δ2x
+

δ2

δ2y
+

δ2

δ2z

)
Ψ+

2

r
Ψ = 0 (23)

Letting v = x+ r, we compute the first partial derivatives of Ψ:

δΨ

δx
=
dv

dx

d

dv

(
J0 ◦ 2

√
v
)
=
dv

dx
J ′
0(2

√
v)v−1/2

δΨ

δy
=
dv

dy

d

dv

(
J0 ◦ 2

√
v
)
=
dv

dy
J ′
0(2

√
v)v−1/2

δΨ

δz
=
dv

dz

d

dv

(
J0 ◦ 2

√
v
)
=
dv

dz
J ′
0(2

√
v)v−1/2

(24)

Next we compute the partial second derivatives of Ψ:

δ2Ψ

δx2
=
d2v

dx2
J ′
0(2

√
v)v−1/2 +

(
dv

dx

)2

J ′′
0 (2

√
v)v−1 − 1

2

(
dv

dx

)2

J ′
0(2

√
v)v−3/2

δ2Ψ

δy2
=
d2v

dy2
J ′
0(2

√
v)v−1/2 +

(
dv

dy

)2

J ′′
0 (2

√
v)v−1 − 1

2

(
dv

dy

)2

J ′
0(2

√
v)v−3/2

δ2Ψ

δz2
=
d2v

dz2
J ′
0(2

√
v)v−1/2 +

(
dv

dz

)2

J ′′
0 (2

√
v)v−1 − 1

2

(
dv

dz

)2

J ′
0(2

√
v)v−3/2

(25)

We need to know the derivatives of v = r + x with respect to the coordinates:

dv

dx
=

d

dx
(x+ r) = 1 +

x

r
dv

dy
=

d

dy
(x+ r) =

y

r

dv

dz
=

d

dz
(x+ r) =

z

r

(26)
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d2v

dx2
=

d

dx

(
1 +

x

r

)
=
r − x(x/r)

r2
=
r2 − x2

r3

d2v

dy2
=
r2 − y2

r3

d2v

dz2
=
r2 − z2

r3

(27)

Substituting (26) and (27) into (25), and (25) into the LHS of (23), we obtain:

d2v

dx2
J ′
0(2

√
v)v−1/2 +

(
dv

dx

)2

J ′′
0 (2

√
v)v−1 − 1

2

(
dv

dx

)2

J ′
0(2

√
v)v−3/2

+
d2v

dy2
J ′
0(2

√
v)v−1/2 +

(
dv

dy

)2

J ′′
0 (2

√
v)v−1 − 1

2

(
dv

dy

)2

J ′
0(2

√
v)v−3/2

+
d2v

dz2
J ′
0(2

√
v)v−1/2 +

(
dv

dz

)2

J ′′
0 (2

√
v)v−1 − 1

2

(
dv

dz

)2

J ′
0(2

√
v)v−3/2

+
2

r
J0(2

√
v)

=
r2 − x2

r3
J ′
0(2

√
v)v−1/2 + (1 +

x

r
)2J ′′

0 (2
√
v)v−1 − 1

2
(1 +

x

r
)2J ′

0(2
√
v)v−3/2

+
r2 − y2

r3
J ′
0(2

√
v)v−1/2 +

(y
r

)2

J ′′
0 (2

√
v)v−1 − 1

2

(y
r

)2

J ′
0(2

√
v)v−3/2

+
r2 − z2

r3
J ′
0(2

√
v)v−1/2 +

(z
r

)2

J ′′
0 (2

√
v)v−1 − 1

2

(z
r

)2

J ′
0(2

√
v)v−3/2

+
2

r
J0(2

√
v)

=
3r2 − x2 − y2 − z2

r3
J ′
0(2

√
v)v−1/2 + (1 + 2

x

r
+
x2

r2
+
y2

r2
+
z2

r2
)J ′′

0 (2
√
v)v−1

− 1

2
(1 + 2

x

r
+
x2

r2
+
y2

r2
+
z2

r2
)J ′

0(2
√
v)v−3/2 +

2

r
J0(2

√
v)

=
2

r
J ′
0(2

√
v)v−1/2+(2+2

x

r
)J ′′

0 (2
√
v)v−1− 1

2
(2+2

x

r
)J ′

0(2
√
v)v−3/2+

2

r
J0(2

√
v)

=
2

r
J ′
0(2

√
v)v−1/2 + 2

x+ r

r
J ′′
0 (2

√
v)v−1 − x+ r

r
J ′
0(2

√
v)v−3/2 +

2

r
J0(2

√
v)
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Remembering that v = x+ r,

=
2

r
J ′
0(2

√
v)v−1/2 +

2

r
J ′′
0 (2

√
v)− 1

r
J ′
0(2

√
v)v−1/2 +

2

r
J0(2

√
v)

=
2

r
J ′′
0 (2

√
v) +

1

r
J ′
0(2

√
v)v−1/2 +

2

r
J0(2

√
v)

=
2

r
J ′′
0 (2

√
v) +

2

r · 2
√
v
J ′
0(2

√
v) +

2

r
J0(2

√
v)

=
2

r

(
J ′′
0 (2

√
v) +

1

2
√
v
J ′
0(2

√
v) + J0(2

√
v)

)
(28)

Assume for that moment that the Bessel function J0(x) satisfies Bessel’s equa-
tion:

x2J ′′
0 (x) + xJ ′

0(x) + x2J0(x) = 0 (29)

dividing through by x2 and changing variables, we get:

J ′′
0 (2

√
v) +

1

2
√
v
J ′
0(2

√
v) + J0(2

√
v) = 0

which shows that (28) is zero, and establishes the proof of (23).

It remains to show that J0(x), defined by (21), actually satisfies (29).

The approach here largely follows [2, p. 92], with modern notation. For integer
values of n, define Jn(z) as follows:

Jn(z) =
1

2π

∫ 2π

0

cos(nθ − z sin θ)dθ n ∈ Z (30)

Differentiating with respect to z, we obtain:

J ′
n(z) =

1

2π

∫ 2π

0

sin(nθ − z sin θ) sin θ dθ (31)
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Applying the trigonometric identity 2 sinα sinβ = cos(α− β)− cos(α+ β),

J ′
n(z) =

1

2π

∫ 2π

0

[
1

2
cos ((n− 1)θ − z sin θ)− 1

2
cos ((n− 1)θ − z sin θ)

]
dθ

=
1

2
Jn−1(z)−

1

2
Jn+1(z)

(32)

Having found a relationship for the difference of Jn−1(z) and Jn+1(z), we now
seek a relationship for their sum.

1

2
Jn−1(z) +

1

2
Jn+1(z)

=
1

2π

∫ 2π

0

[
1

2
cos ((n− 1)θ − z sin θ) +

1

2
cos ((n+ 1)θ − z sin θ)

]
dθ

=
1

2π

∫ 2π

0

cos(nθ − z sin θ) cos θ dθ

=
n

z
· 1

2π

∫ 2π

0

cos(nθ − z sin θ) dθ − 1

z
· 1

2π

∫ 2π

0

cos(nθ − z sin θ) (n− z cos θ) dθ

=
n

z
· 1

2π

∫ 2π

0

cos(nθ − z sin θ) dθ − 1

z
· 1

2π

[
sin(nθ − z sin θ)

]2π
0

=
n

z
Jn(z)

(33)

where I used the fact that n is an integer to evaluate the bracketed expression
as zero.

Now we use (32) and (33) to evaluate the LHS of (29):

x2J ′′
0 (x) + xJ ′

0(x) + x2J0(x)

=
1

4
x2J−2(x)−

1

2
x2J0(x) +

1

4
x2J2(x) +

1

2
xJ−1(x)−

1

2
xJ1(x) + x2J0(x)

=

[
1

4
x2J−2(x) +

1

4
x2J0(x)

]
+

[
1

4
x2J2(x) +

1

4
x2J0(x)

]
+

1

2
xJ−1(x)−

1

2
xJ1(x)

= −1

2
xJ−1(x) +

1

2
xJ1(x) +

1

2
xJ−1(x)−

1

2
xJ1(x) = 0

(34)

which proves that J0(x) satisfies (29).
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