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Abstract

The author has developed a novel technique, based on differential al-
gebra, for finding exact solutions of partial differential equations. As an
illustration of the method, I derive a previously unknown exact solution
to the simplest time-independent Schrödinger equation for hydrogen. The
solution, J0(2

√
x + r), involves a Bessel function, is not separable, and is

not in L2.

Introduction

A short list of methods to find exact solutions to PDEs includes separation of
variables, the method of characteristics, transform methods (including Fourier
transforms), symmetry methods, Green’s functions, Duhamel’s principle, and
the calculus of variations. The author has developed another exact solution
technique based on differential algebra and has used it to find a new solution to
one of the most well-studied equations in mathematical physics, the Schrödinger
equation for hydrogen.

The Schrödinger equation is the quantum mechanical analog of Newton’s sec-
ond law. Both Newton’s equation and Schrödinger’s equation describe the time
evolution of a system of particles interacting under the influence of forces. New-
ton’s classical second law F = ma describes the time evolution of the position
and velocity of each particle. Schrödinger’s quantum mechanical formulation
HΨ = i δδtΨ describes the time evolution of the wavefunction Ψ, which is a
complex-valued function of particle position that encodes a probability density
function for the particle positions as |Ψ|2 and a probability density function for
the particle momenta as |Ψ̂|2.

There is no one Schrödinger equation any more than there is one F = ma.
Each physical system under consideration gives rise to a different collection of
particles and interacting forces, and a different Hamiltonian operator H. Indeed,
even the approximations we make strongly determine the form of the equation
for a given system.
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The Hamiltonian operatorH, so named because of its connection to Hamiltonian
mechanics, is most typically given in the form H = T − V , where T is the sum
of the kinetic energy of all particles and V is the potential energy of the system,
due to its forces.

H = T − V

One of the simplest Schrödinger equations is for the hydrogen atom, considering
the electric force attraction between the nucleus and the electronic, and ignoring
all other effects. It has the following form:

−1

2
∇2Ψ− 1

r
Ψ = i

δ

δt
Ψ

where Ψ is the wavefunction, ∇2 is the Laplacian, and r is the distance between
the two particles. We use Hartree atomic units, a system of units in which four
fundamental physical constants1 are assigned the value of 1, in order to eliminate
the need for any conversion constants in the equation. The unit of distance, in
particular, is Bohr radii, approximately half an Angström, a Angström being
10−10 meters. The first term, − 1

2∇
2Ψ, is the kinetic energy operator, and the

second term, − 1
rΨ, is the potential energy term.

We can further simplify the general, time-dependent Schrödinger equation by
requiring that the position and momentum probability density functions each
be time-independent. This restricts the solution to stable states of the hydrogen
atom, settles the wavefunction up to a multiple of eitE , where E is the state’s
energy in Hartrees (approximately 27 eV), and leads to the time-independent
Schrödinger equation for hydrogen:

− 1

2
∇2Ψ− 1

r
Ψ = EΨ (1)

This equation is amenable to seperation of variables. Using spherical coordinates
and writing Ψ as Ψ = R(r)Y (θ, ψ) = R(r)P (θ)F (ψ), substituting into (1), we
obtain the following expansion2:

1

R

d

dr

[
r2
dR

dr

]
+ 2(Er2 + r) +

[
1

P sin θ

d

dθ

[
sin θ

dP

dθ

]
+

1

F sin2 θ

d2F

dψ2

]
= 0

1the reduced Planck constant, the elementary charge, the electron mass, and the Coulumb
constant

2hyperphysics
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Energy Wavefunction Shell
(Hartrees)

− 1
2 e−r 1s
− 1

8 (2− r)e−r/2 2s
xe−r/2 2p
ye−r/2

ze−r/2

− 1
18 (27− 18r + 2r2)e−r/3 3s

(6− r)xe−r/3 3p
(6− r)ye−r/3
(6− r)ze−r/3

The first part, dependant on r, is the radical equation, whose solutions are, in
general. hypergeometric functions, but which, in the case of specific energy val-
ues, simplify to polynomials in r times an exponential of r. It is these solutions,
combined with the solution of the second part of the equation (the colatitude
equation, solved by the associated Laguerre polynomials, and the azimuthal
equation), which have been known for a hundred years, and are hence referred
to as the classical solutions to hydrogen.

The associated energy levels are negative because these are bound states. Zero
energy would correspond to an electron and a proton at rest an (infinitely) large
distance apart.

The classical solutions are separable, are in L2, are in C∞, and are each paired
with a negative energy value, of which − 1

2 is the lowest, and corresponds to the
1s or ground state.

Yet the existance of separable solutions leaves open the existance of non-separable
solutions.

It is perhaps surprising that such a well-studied equation would have fairly
simple, previously undiscovered, non-separable solutions.

I now describe the algorithm used to find the new solution of hydrogen.

Solution Algorithm

Given a PDE defined by Ritt-type differential polynomials, attempt the follow-
ing:
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1. Select an ansatz that defines a differential space parameterized by constants
(see next section)

2. Reduce the PDE modulo the differential ideal that characterizes the differ-
ential space (differential elimination step)

3. Construct a system of polynomial equations in the constants by collecting
like terms in the remaining variables (projection step)

4. Construct the ideal I defined by that system of polynomial equations as
generators

5. Are there any zero divisors in the differential space? (probably not) If not,
take the radical of I.

6. Construct the primary decomposition (prime decomposition if I is radical)

7. Each ideal in the primary/prime decomposition corresponds to a variety in
the space of constants, the union of which form the solution space of the PDE
in the differential space.

The Ansatz

Rather than attempt to derive differential equations that apply to all solutions
of the PDE, we restrict our attention to an ansatz, which is a family of ex-
tensions to the differential ring used to define the PDE. These are the primary
requirements for an ansatz:

• it must be formed from a finite sequence of linear ODE and algebraic
extensions, and

• it must be expressed using differential polynomials, and

• it must be parametized only by constants

The first requirement arises because I am specifically looking for ODE based
solutions, simply because our ODE theory and practice is far beyond our PDE
theory and practice. One of the most fundamental questions to ask of a PDE,
in my opinion, is can it be solved using ODEs? I further restrict to linear
ODEs because their theory and practice is even more refined. Since algebraic
extensions lead naturally to nonlinear ODE extensions, if I wish to include
algebraic extensions with linear ODE, they must be included explicitly (and
are).
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The second requirement is natural within the context of differential algebra, but
is even more important if we wish to systematize this algorithm using something
like Rosenfeld-Gröbner to perform the differential reduction step.

The final requirement is meant to ensure that we can ultimately reduce this
problem to a finite-dimensional space of constants, and as we use differential
algebra throughout, we expect a system of polynomial equations in those con-
stants, which will be amenable to the techniques of classical and modern alge-
braic geometry.

No algorithm is presently available to select an ansatz.

I’ve developed a graphical notation to describe an ansatz. Blue-purple boxes
denote rings, orange boxes (whether shaded orange or not) denote ODE ex-
tensions, and green boxes denote algebraic extensions. A blue box drawn im-
mediately around an orange or green box denote the ring formed by adjoining
the element defined by the orange or green box. Polynomials are drawn as a
square white box and are connected by a line to the ring to which they belong.
A number next to the line indicates a degree bound on the polynomial, and
two numbers separated by a slash denote a rational function. For example, 2/2
denotes a rational function with a second degree numerator and a second degree
denominator.
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Polynomial selected from ring:

ring, labeled with something like
C[x, y, z]

1 (degree bound on polynomial)

ODE extension
described by an equation and a variable

ring generated by adjoining element
described with an ODE

algebraic extension
described by minimal polynomial

ring generated by adjoining element
described by an algebraic extension

Ansatz 5

Ansatz 5, used to find the new solution of hydrogen, is a second-order ODE
with linear coefficients and a linear variable, i.e:

Ψ′′ + Ψ′ + Ψ

Q[v] v

1 1 1

Ψ

Q[x, y, z, r]/(r2 − x2 − y2 − z2)

1

The structure of ansatz 5 can be described using differential polynomials and
jet notation (subscripts indicate differentiation):
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Ψx = Ψ′vx Ψy = Ψ′vy Ψz = Ψ′vz

Ψ′x = Ψ′′vx Ψ′y = Ψ′′vy Ψ′z = Ψ′′vz

(a0 + a1v)Ψ′′ + (b0 + b1v)Ψ′ + (c0 + c1v)Ψ = 0

v = v1x+ v2y + v3z + v4r

(2)

Essentially we introduce a new derivation with respect to v. We’re only inter-
ested in how Ψ differentiates with this new derivation, and that’s what Ψ′ and
Ψ′′ tell us. We do not have to modify the original differential ring, except to
add Ψ, Ψ′, and Ψ′′ as new indeterminates. The first two lines of equations in (2)
show how to evaluate the derivatives of Ψ and Ψ′ with respect to the derivations
in the differential ring (it’s just the chain rule), and the third line shows how
to eliminate Ψ′′ wherever it appears and and replace it with an expression in Ψ
and Ψ′′. The final equation is there because v, too, must be degree bounded.

Differential Reduction Step

I attempted to use the Rosenfeld-Gröbner algorithm to reduce equation (1)
modulo (2), but it ultimately ran out of memory on a 96 GB computer after
30 hours. Instead, I used Sage to construct a polynomial ring modulo the ideal
r2 − x2 − y2 − z2 to handle the algebraic extension (present not in the ansatz
proper, but in the original ring used to construct the PDE). Next I directed the
software to expand the derivatives in (1) and substitute for Ψ′′ and v according
to the ansatz. The result is a rational function with a 228 term numerator and
an 18 term denominator. We ignore the denominator. The numerator begins:

−2rΨx3Ed1v1−3rΨx3n1v
2
0v1−rΨx3n1v31−rΨx3n1v1v22−rΨx3n1v1v23−· · · (3)

Projection Step

Having reduced our PDE (14) by the differential ideal defined by (2), we now
wish to project our solution onto the subspace of the constants. We’re looking
for constants that will solve equation (14) for all values of x, y, z, r, Ψ, and Ψ′,
so we collect like terms in x, y, z, r, Ψ, and Ψ′, organizing the numerator like
this:

rΨx3
(
−2Ed1v1 − 3n1v

2
0v1 − n1v31 − n1v1v22 − n1v1v23

)
− · · · (4)
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The expressions in parenthesis gives us a system of equations (only one is shown)
involving the vi, di, mi and ni variables that, if satisfied, will yield a solution
to (14) in the form (??) and (??). Once duplicate equations are dropped, the
system has 34 equations.

−2n1v
3
0 − 4n1v0v

2
1 − 4n1v0v

2
2 − 2n1v0v

2
3 − 4Ed1v0

−2n1v
3
0 − 4n1v0v

2
1 − 2n1v0v

2
2 − 4n1v0v

2
3 − 4Ed1v0

−2n1v
3
0 − 2n1v0v

2
1 − 4n1v0v

2
2 − 4n1v0v

2
3 − 4Ed1v0
−4m1v0v1v2
−4m1v0v1v3
−4m1v0v2v3
−4n1v0v1v2
−4n1v0v1v3
−4n1v0v2v3

−3m1v
2
0v1 − m1v

3
1 − m1v1v

2
2 − m1v1v

2
3

−3m1v
2
0v2 − m1v

2
1v2 − m1v

3
2 − m1v2v

2
3

−3m1v
2
0v3 − m1v

2
1v3 − m1v

2
2v3 − m1v

3
3

−2m1v
3
0 − 4m1v0v

2
1 − 4m1v0v

2
2 − 2m1v0v

2
3

−2m1v
3
0 − 4m1v0v

2
1 − 2m1v0v

2
2 − 4m1v0v

2
3

−3n1v
2
0v1 − n1v

3
1 − n1v1v

2
2 − n1v1v

2
3 − 2Ed1v1

−3n1v
2
0v2 − n1v

2
1v2 − n1v

3
2 − n1v2v

2
3 − 2Ed1v2

−3n1v
2
0v3 − n1v

2
1v3 − n1v

2
2v3 − n1v

3
3 − 2Ed1v3

−2m1v
3
0 − 2m1v0v

2
1 − 4m1v0v

2
2 − 4m1v0v

2
3

−n0v20 − n0v
2
1 − n0v

2
2 − n0v

2
3 − 2Ed0 − 2 d1v0
−2n0v0v1 − 2 d1v1
−2n0v0v2 − 2 d1v2
−2n0v0v3 − 2 d1v3

−2 d1v0v1 − 2m0v0v1
−2 d1v0v2 − 2m0v0v2
−2 d1v0v3 − 2m0v0v3

−n1v30 − 3n1v0v
2
1 − n1v0v

2
2 − n1v0v

2
3 − 2Ed1v0

−n1v30 − n1v0v
2
1 − 3n1v0v

2
2 − n1v0v

2
3 − 2Ed1v0

−n1v30 − n1v0v
2
1 − n1v0v

2
2 − 3n1v0v

2
3 − 2Ed1v0

−2 d1v
2
0 − m0v

2
0 − m0v

2
1 − m0v

2
2 − m0v

2
3

−2 d0
−2 d0v0

−m1v
3
0 − 3m1v0v

2
1 − m1v0v

2
2 − m1v0v

2
3

−m1v
3
0 − m1v0v

2
1 − 3m1v0v

2
2 − m1v0v

2
3

−m1v
3
0 − m1v0v

2
1 − m1v0v

2
2 − 3m1v0v

2
3

(5)
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Prime Decomposition

(5) is simple enough that we can form an ideal I in Q[v0, ...,m1, E] from (5),
and Sage can calculate a Gröbner basis for the radical I in less than a second.
While we could work with the Gröbner basis directly3 , I find it more useful to
study the primary decomposition, which Sage computes using the Shimoyama-
Yokoyama algorithm4 as implemented in Singular. Gröbner basis calculations
are done as a subalgorithm of Shimoyama-Yokoyama.

Taking the radical of the ideal simplifies both the theory and the application, and
can be justified because there are no nilpotent elements in our solution space,
which is just 11-dimensional complex space C11. The primary decomposition of
a radical ideal is also a prime decomposition, as the distinction between primary
and prime ideals is only significant for non-radical ideals with nilpotent elements.
Sage/Singular computes the following decomposition into prime ideals:

sage: I.radical().primary_decomposition()

(n1, n0,m1,m0, d1, d0) (6a)

(v3, v2, v1, v0, d0) (6b)(
v21 + v22 + v23 , v0, d1, d0

)
(6c)

(v3, v2, v1,m1,m0 − n0v0, 2d1 + n0v0, d0, En0 − n1v0) (6d)(
v20 − v21 − v22 − v23 , n1,m1,m0 − n0v0, d1 + n0v0, d0, E

)
(6e)

Several of these varieties solve the system of equations, but do not lead to a
meaningful solution to the differential equation. In brief,

(6a) sets all coefficients of the ODE to zero, so we discard it,

(6b) sets the variable v to zero, so we discard it,

(6c) sets the coefficient of D2Ψ in the ODE to zero, resulting in a first-order
ODE, so we discard it, too,

(6d) corresponds to the classical solutions (see below), and

(6e) corresponds to our new solution (see below).

3A Gröbner basis of the solution ideal in lexicographic order E > di > mi > ni > vi
contains 65 polynomials.

4Localization and Primary Decomposition of Polynomial Ideals, J. Symbolic Computation
(1996) 22, 247–277
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How to understand ideal (6d)? d0 is an ideal generator, so d0 = 0, and we can
always multiply our DE by a constant without affecting our result, so we can
set d1 = 1. Likewise, we can multiply our variable v by a constant and that
will only change our coefficients by constants, and v1 = v2 = v3 = 0, so we can
normalize by setting v0 = 1. This simplifies ideal (6d) to:

(v3, v2, v1, v0 − 1, n0 + 2,m1,m0 + 2, d1 − 1, d0, 2E + n1) (7)

v = r

vΨ′′ + 2Ψ′ + 2(1 + Ev)Ψ = 0
(8)

This is the classical radial equation obtained by seperation of variables5. We use
spherical coordinates, set Ψ = R(r)P (θ)F (ψ), and obtain the above equation
for R(r), though it is more commonly written in this form:

1

R

d

dr

[
r2
dR

dr

]
+ 2(Er2 + r) = l(l + 1) (9)

where l is the orbital quantum number, which can be zero. Set l = 0, v = r
and Ψ = R and expand out the derivative to obtain (8). Its presence here was
expected and won’t be commented on further.

Ideal (6e) was not expected, and contains our new solution. Does it contain
any additional solutions? d0 is an ideal generator, so d0 = 0, and we can set
d1 = 1, by the same logic as above. Our coordinates are in real space, so our
vi coefficients must be real (why?), so all of their squares must be positive, and
since v20−v21−v22−v33 = 0, v0 must be non-zero. So we can normalize by setting
v0 = 1. That simplifies (6e) to this ideal:

(
v21 + v22 + v23 − 1, v0 − 1, n1, n0 + 1,m1,m0 + 1, d1 − 1, d0, E

)
(10)

This ideal corresponds to the following system of equations:

5See Pauling and Wilson or http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/

hydrad.html
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E = 0

d0 = 0 d1 = 1

m0 = −1 m1 = 0

n0 = −1 n1 = 0

v0 = 1 v21 + v22 + v23 = 1

(11)

Substituting these values back into our ansatz, we conclude that Ψ(v) is a
solution of (14) under these conditions:

v
δ2Ψ

δv2
+
δΨ

δv
+ Ψ = 0

v = v1x+ v2y + v3z + r

v21 + v22 + v23 = 1

(12)

The expression v1x+ v2y+ v3z is easily identified as a dot product between the
coordinate (x, y, z) and the unit vector (v1, v2, v3) (remembering that v21 + v22 +
v23 = 1). The direction of this vector is arbitrary, so we can orient the x-axis in
this direction and set (v1, v2, v3) = (1, 0, 0) without loss of generality.

We now have to solve a second order ODE:

vΨ′′(v) + Ψ′(v) + Ψ(v) = 0 (13)

Wolfram Mathematica6 can now analyze this equation and determine that it is
equivalent to the Bessel function (15).

In[3]:= DSolvex * y''[x] + y'[x] + y[x] ⩵ 0, y[x], x

Out[3]= y[x] → BesselJ0, 2 x  1 + 2 BesselY0, 2 x  2

leading to...

The Main Result

Consider the following simple Schödinger equation for the hydrogen atom:

6I originally used Wolfram Alpha
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− 1

2
∇2Ψ− 1

r
Ψ = EΨ (14)

Let J0 be the ordinary Bessel function J0, and set

Ψ = J0(2
√
x+ r) (15)

where x, y, z are Cartesian coordinates and r =
√
x2 + y2 + z2.

Then (15) is an exact solution to (14), with E = 0.

Verification

The result can be easily verified using Mathematica7, as follows:

In[1]:= Psif := Psi[x, y, z]

In[2]:= r[x_, y_, z_] = Sqrt[x^2 + y^2 + z^2]

Out[2]= x2 + y2 + z2

In[3]:= eqn = - 1  2 * LaplacianPsif, {x, y, z} - 1 / r[x, y, z] * Psif ⩵ 0 

Out[3]= -
Psi[x, y, z]

x2 + y2 + z2
+
1

2
-Psi0,0,2[x, y, z] - Psi0,2,0[x, y, z] - Psi2,0,0[x, y, z] ⩵ 0

In[4]:= solx_, y_, z_ := BesselJ[0, 2 * Sqrt[x + r[x, y, z]]]

In[5]:= FullSimplifyeqn /. Psi → {x, y, z}  sol[x, y, z]

Out[5]= True

Generalization

The choice of x is arbitrary, and any ordinary Bessel function can be used:

Ψ = F (2
√
a1x+ a2y + a3z + r) (16)

where

a21 + a22 + a23 = 1

and F is any linear combination of the Bessel functions J0 and Y0.

Any finite linear combination of functions of the form (16) also solves (14).

7A manual verification is presented in an appendix
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Software

The program used to construct the system of equations is available here:
https://github.com/BrentBaccala/helium

It’s a Sage script that works fine with Sage 9.0 on Ubuntu 20.

Use it to find ideal (6) by running Sage as follows:

load(’helium.sage’) # loads the script

prep_hydrogen(5) # select PDE:hydrogen and ansatz:5

init() # finish setting everything up

I=ideal(eqns_RQQ) # constuct ideal from equations

I.radical().primary_decomposition()

Here are some other convenient variables and functions in the script:

A, B, C, V # trial forms of various polynomials

eq_a # the PDE in its original form

R # polynomial ring over integers

F # fraction field of R

F_eq_a # the PDE modulo the ansatz

F_eq_a_n # expanded numerator (in R)

F_eq_a_d # expanded denominator (in R)

eqns_RQQ # system of equations to solve

The Ansatzen

These are current and future ansatzen for the form of the ODE:

For hydrogen, the PDE is always ∇2Ψ− 1
rΨ = EΨ

For helium, the PDE is always ∇2
1Ψ +∇2

2Ψ− 2
r1
−Ψ 2

r2
−Ψ 1

r12
Ψ = EΨ

Ansatz 1: Exponential of a first degree polynomial times a first degree polynomial

Expected to find 1s and 2s levels of hydrogen, e−r and (2− r)er/2

A,B ∈ C[x, y, z, r]; degA ≤ 1; degB ≤ 1

Ψ = AF ;F ′ = F ;Fx = BxF
′;Fy = ByF

′;Fz = BzF
′

or just: Ψ = AF ;Fx = BxF ;Fy = ByF ;Fz = BzF

13
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Example: B = −r;A = 1;E = −1/2 ⇒ e−r

Example: B = −r/2;A = r − 2;E = −1/8 ⇒ (2− r)e−r/2

Ansatz 2: Logarithm of a first degree polynomial times a first degree polynomial

A,B ∈ C[x, y, z, r]; degA ≤ 1; degB ≤ 1

Ψ = AF ;F ′ = 1/F ;Fx = BxF
′;Fy = ByF

′;Fz = BzF
′

or just: Ψ = AF ;Fx = Bx/F ;Fy = By/F ;Fz = Bz/F

Ansatz 3,4: Unused

Ansatz 5: Second-order ODE with linear coefficients and a linear variable

Expected to find 1s level of hydrogen, e−r

A,B,C, V ∈ C[x, y, z, r]; degA ≤ 1; degB ≤ 1; degC ≤ 1; deg V ≤ 1

Ψ = F ;AF ′′ +BF ′ + CF = 0;Fx = VxF
′;Fy = VyF

′;Fz = VzF
′

Example: V = −r;A+ C = −B;E = −1/2 (A,B,C ∈ C) ⇒ e−r

Ansatz 6: Second-order ODE with linear coefficients and a first-degree rational func-
tion variable

Ansatz 7: Second-order ODE with second-degree coefficients and a second-degree
rational function variable

Ansatz 8: (logically before ansatz 5) First-order ODE with linear coefficients and a
linear polynomial variable

Ansatz 9: (logically before ansatz 8) First-order ODE with constant coefficients and
a linear polynomial variable

Ansatz 10: (logically before ansatz 7) Second-order ODE with second-degree coeffi-
cients and a second-degree polynomial variable

Ansatz 11: An second-degree algebraic extension with second-degree coefficients (in-
volving E?), followed by ansatz 7 (second-order ODE with second-degree
coefficients and a second-degree rational function variable)

Ansatz 12: Two nested second-order ODEs with second-degree coefficients and a second-
degree rational function variable (ansatz 7 twice)

Ansatz 13: Ansatz 11 twice

Ansatz 1
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Q[x, y, z, r]/(r2 − x2 − y2 − z2)

. .

.

Ψ′ = Ψ Ψ

Ψ

1

Ψx =
Ψ′

Bx
Ψy =

Ψ′

By
Ψz =

Ψ′

Bz

Ψ′ = Ψ

B = b0 + b1x+ b2y + b3z + b4r

Ansatz 9

Ψ′ + Ψ

Q[v] v

0 0

Ψ

Q[x, y, z, r]/(r2 − x2 − y2 − z2)

1

Ansatz 8

Ψ′ + Ψ

Q[v] v

1 1

Ψ

Q[x, y, z, r]/(r2 − x2 − y2 − z2)

1

Ansatz 5
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Ψ′′ + Ψ′ + Ψ

Q[v] v

1 1 1

Ψ

Q[x, y, z, r]/(r2 − x2 − y2 − z2)

1

Ψx = Ψ′vx Ψy = Ψ′vy Ψz = Ψ′vz

Ψ′x = Ψ′′vx Ψ′y = Ψ′′vy Ψ′z = Ψ′′vz

(a0 + a1v)Ψ′′ + (b0 + b1v)Ψ′ + (c0 + c1v)Ψ = 0

v = v1x+ v2y + v3z + v4r

Ansatz 6

Ψ′′ + Ψ′ + Ψ

Q[v] v

1 1 1

Ψ

Q[x, y, z, r]/(r2 − x2 − y2 − z2)

1/1

Ansatz 7

Ψ′′ + Ψ′ + Ψ

Q[v] v

2 2 2

Ψ

Q[x, y, z, r]/(r2 − x2 − y2 − z2)

2/2

Ansatz 10
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Ψ′′ + Ψ′ + Ψ

Q[v] v

2 2 2

Ψ

Q[x, y, z, r]/(r2 − x2 − y2 − z2)

2

Ansatz 11

Q[x, y, z, r, γ]/(r2 − x2 − y2 − z2, γ2 + γ + )

Ψ′′ + Ψ′ + Ψ

Q[v] v

? ? ?

Ψ

γ2 + γ +

?

Q[x, y, z, r]/(r2 − x2 − y2 − z2)

? ? ?

Ansatz 12
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Ψ′′ + Ψ′ + Ψ

Q[v] v

2 2 2

Ψ

Θ′′ + Θ′ + Θ

Q[u] u

2 2 2

Θ

Q[x, y, z, r]/(r2 − x2 − y2 − z2)

2/2

2/2

Ansatz 13

Ψ′′ + Ψ′ + Ψ

γ2 + γ +

Q[v] v

2 2 2

2 2 2

Ψ

Q[x, y, z, r]/(r2 − x2 − y2 − z2)

2/2

18



Ansatz 14

Ψ′′ + Ψ′ + Ψ

θ′ =

Q[v] v

2 2 2

2/2

Ψ

Q[x, y, z, r]/(r2 − x2 − y2 − z2)

2/2

Ansatz 15

Ψ′′ + Ψ′ + Ψ

θ′′+ θ′+ θ

Q[v] v

2 2 2

2 2 2

Ψ

Q[x, y, z, r]/(r2 − x2 − y2 − z2)

2/2

19



Performance

Ansatz 5 Hydrogen Differential Elimination Rosenfeld-Groebner memory exhaustion on 96 GB machine after 30 hours
Manual quick

Sol of constant system Bertini 8.33 hours (laptop); only four components (why?)
Singular radical quick
Singular prime decomp quick

Ansatz 5.1 Hydrogen Differential Elimination Manual quick
Sol of constant system Singular radical quick

Singular prime decomp quick

Ansatz 5.2 Hydrogen Differential Elimination Manual quick
Sol of constant system Singular radical quick

Singular prime decomp quick

Ansatz 5.3 Hydrogen Differential Elimination Manual quick
Sol of constant system Singular radical 5 minutes

Singular prime decomp quick

Ansatz 6 Helium Differential Elimination Manual 10 seconds
Sol of constant system Singular radical laptop crashed after about 1 week

Bertini laptop crashed after about 1 week

Ansatz 11 Hydrogen Differential Elimination Manual 18 hours (laptop)
Sol of constant system Singular radical oom, 96 GB, 39 hours, c200-1

Singular primary dec oom, 96 GB, c200-1

Draft Status

This paper is still a draft and is being updated regularly.

Contact

The author maintains a discussion page for this result on his personal blog at:

https://www.freesoft.org/blogs/soapbox/a-new-solution-of-hydrogen/
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Appendix: Manual Verification of the Result

For anybody wondering how Mathematica concludes that (15) solves (14), the
claim is that Ψ = J0(2

√
x+ r) = (J0 ◦ 2

√
v)(x+ r) satisfies:

(
δ2

δ2x
+

δ2

δ2y
+

δ2

δ2z

)
Ψ +

2

r
Ψ = 0 (17)

Letting v = x+ r, we compute the first partial derivatives of Ψ:

δΨ

δx
=
dv

dx

d

dv

(
J0 ◦ 2

√
v
)

=
dv

dx
J ′0(2
√
v)v−1/2

δΨ

δy
=
dv

dy

d

dv

(
J0 ◦ 2

√
v
)

=
dv

dy
J ′0(2
√
v)v−1/2

δΨ

δz
=
dv

dz

d

dv

(
J0 ◦ 2

√
v
)

=
dv

dz
J ′0(2
√
v)v−1/2

(18)

Next we compute the partial second derivatives of Ψ:

δ2Ψ

δx2
=
d2v

dx2
J ′0(2
√
v)v−1/2 +

(
dv

dx

)2

J ′′0 (2
√
v)v−1 − 1

2

(
dv

dx

)2

J ′0(2
√
v)v−3/2

δ2Ψ

δy2
=
d2v

dy2
J ′0(2
√
v)v−1/2 +

(
dv

dy

)2

J ′′0 (2
√
v)v−1 − 1

2

(
dv

dy

)2

J ′0(2
√
v)v−3/2

δ2Ψ

δz2
=
d2v

dz2
J ′0(2
√
v)v−1/2 +

(
dv

dz

)2

J ′′0 (2
√
v)v−1 − 1

2

(
dv

dz

)2

J ′0(2
√
v)v−3/2

(19)

We need to know the derivatives of v = r + x with respect to the coordinates:

dv

dx
=

d

dx
(x+ r) = 1 +

x

r
dv

dy
=

d

dy
(x+ r) =

y

r

dv

dz
=

d

dz
(x+ r) =

z

r

(20)
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d2v

dx2
=

d

dx

(
1 +

x

r

)
=
r − x(x/r)

r2
=
r2 − x2

r3

d2v

dy2
=
r2 − y2

r3

d2v

dz2
=
r2 − z2

r3

(21)

Substituting (20) and (21) into (19), and (19) into the LHS of (17), we obtain:

d2v

dx2
J ′0(2
√
v)v−1/2 +

(
dv

dx

)2

J ′′0 (2
√
v)v−1 − 1

2

(
dv

dx

)2

J ′0(2
√
v)v−3/2

+
d2v

dy2
J ′0(2
√
v)v−1/2 +

(
dv

dy

)2

J ′′0 (2
√
v)v−1 − 1

2

(
dv

dy

)2

J ′0(2
√
v)v−3/2

+
d2v

dz2
J ′0(2
√
v)v−1/2 +

(
dv

dz

)2

J ′′0 (2
√
v)v−1 − 1

2

(
dv

dz

)2

J ′0(2
√
v)v−3/2

+
2

r
J0(2
√
v)

=
r2 − x2

r3
J ′0(2
√
v)v−1/2 + (1 +

x

r
)2J ′′0 (2

√
v)v−1 − 1

2
(1 +

x

r
)2J ′0(2

√
v)v−3/2

+
r2 − y2

r3
J ′0(2
√
v)v−1/2 +

(y
r

)2
J ′′0 (2

√
v)v−1 − 1

2

(y
r

)2
J ′0(2
√
v)v−3/2

+
r2 − z2

r3
J ′0(2
√
v)v−1/2 +

(z
r

)2
J ′′0 (2

√
v)v−1 − 1

2

(z
r

)2
J ′0(2
√
v)v−3/2

+
2

r
J0(2
√
v)

=
3r2 − x2 − y2 − z2

r3
J ′0(2
√
v)v−1/2 + (1 + 2

x

r
+
x2

r2
+
y2

r2
+
z2

r2
)J ′′0 (2

√
v)v−1

− 1

2
(1 + 2

x

r
+
x2

r2
+
y2

r2
+
z2

r2
)J ′0(2

√
v)v−3/2 +

2

r
J0(2
√
v)

=
2

r
J ′0(2
√
v)v−1/2+(2+2

x

r
)J ′′0 (2

√
v)v−1− 1

2
(2+2

x

r
)J ′0(2

√
v)v−3/2+

2

r
J0(2
√
v)

=
2

r
J ′0(2
√
v)v−1/2 + 2

x+ r

r
J ′′0 (2

√
v)v−1 − x+ r

r
J ′0(2
√
v)v−3/2 +

2

r
J0(2
√
v)
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Remembering that v = x+ r,

=
2

r
J ′0(2
√
v)v−1/2 +

2

r
J ′′0 (2

√
v)− 1

r
J ′0(2
√
v)v−1/2 +

2

r
J0(2
√
v)

=
2

r
J ′′0 (2

√
v) +

1

r
J ′0(2
√
v)v−1/2 +

2

r
J0(2
√
v)

=
2

r
J ′′0 (2

√
v) +

2

r · 2
√
v
J ′0(2
√
v) +

2

r
J0(2
√
v)

=
2

r

(
J ′′0 (2

√
v) +

1

2
√
v
J ′0(2
√
v) + J0(2

√
v)

)
(22)

Now, the ordinary Bessel function J0(x) satisfies:

x2J ′′0 (x) + xJ ′0(x) + x2J0(x) = 0

dividing through by x2 and changing variables, we get:

J ′′0 (2
√
v) +

1

2
√
v
J ′0(2
√
v) + J0(2

√
v) = 0

which shows that (22) is zero, and establishes the proof of (17).

23


