Isearch Internals

Brent Baccala
baccala@freesoft.org

August, 2001

1 Introduction

Isearch {ttp://www.etymon.com/Isearch/)is a full-text searching system published under an opercsou
license. It indexes a collection of documents to facilitaj@d searches, for example to find all instances of the
word ethernetin a gigabyte of data spread over a thousand files. This paserides the internals of Isearch
v1.47, focusing mainly on the structure of the index files mk dOther documents in the Isearch distribution,
particularly thelsearchTutoria) discuss the use of Isearch’s programs from a user’s pengpec

The document collection is a set of ordinary files, residiognewhere on the system, and must be readable
during searches, since the Isearch index only stores psitdghe words, not the words themselves. Each
document has an associat@ocument typeindicating the structure of the document and implying hbe t
file should be parsed into records and fields. Isearch comissawver two dozen document types defined,
and provides an extension API to allow new document type®toddaed in C and compiled into the Isearch
programs.

The collection is modeled as a set of records, each corrésppto a range of bytes within a single file. The
results of a search operation are sets of records. In thdesingase, each record corresponds to a single file
on disk, but other possibilities exist. For example, NELINE document type indexes each line of a file as
independent records. Each line thus appears independeititly result sets. ThdAILFOLDERdocument type
parses standard UNIX mail folders and treats each messageeasrd, producing search results containing
individual email messages.

The record can be further parsed ifigds for example the title of an HTML document, or the sender of an
email message. Fielded search operators allow search tefmesestricted to individual fields. For example,
searching folFrom/baccala in a MAILFOLDERdocument matches only those records contaibatgala in
theFrom: header. However, the result set would still indicate th&em®timail message, since fields are used
to restrict search operations, and records are the fundaireatiity returned from the searches.

The Isearch index itself consists of a set of files on dislqtified by a common prefix, and using a set of stan-
dard file extensions. All of the Isearch utilities accepd aption, which specifies a UNIX path name to reach
the index files. No file actually exists by the name specifieth wii ; the software appends the various file ex-
tensions to find individual files. For example, specifyidgndex/topics indicates thaindex/topics.mdt

is the Master Document Tabliedex/topics.dbi is the Database Info file, etc.

File Extension Description

.dbi Database Info file

.dfd Data Field Definitions Table
anx Index

Anx. num Index numbenum

.mdt Master Document Table
.mdk MDT Key Index

.mdg MDT GP Index

.Sta Database State file

. hum Data field filenum

Figure 1: Isearch file extensions

2 Database Info file

Thedbi file is a small, formatted ASCII file containing overall infoation about the index. It's structure
is simple — each key or value occupies its own line, begun with”, and the indentation level indicates
the line’s position in the hierarchy. The Isearch code eeterit as a “registry”, and it's structure is clearly
patterned after the Windows registry. Here’s a sardpiefile:

+Dbinfo
+VersionNumber
+1.47d
+MagicNumber
+7
+DocType
+
+DocTypeOptions
+
+BigEndian
+0

The most important entries akersionNumber , indicating the version of Isearch that generated the index
MagicNumber , indicating the revision of the database format, and thushwersions of the program can read
this databaseBigEndian , indicating the byte ordering in the 32-bit integer valuas¢ DocType , the default
document type to be used if none is specified orlittlex command line.

3 Master Document Table

The Master Document Table (MDT) contains an entry for evepprd in the document collection. Stored in
a file with extensionmdt , the MDT entries currently (Isearch v1.47) are 1380-bytérGcsures, as shown in
Figures 2 and 3.

Isearch indexes documents using a 32-bit index, calledlzaglmosition (GP), which maps to character posi-
tions in the files. Each record maps to exactly the same nuofliePs as there are byte in the record, and no
overlap is allowed between two record’s GP ranges. To res®l@P, you look it up in the Master Document
Table (MDT) which lists initial and final GPZ]lobalFileStartand GlobalFileEnd for each record in the
collection. After finding the MDT entry, subtract the recsr@lobalFileStartto get a character offset in the
record. The MDT entry will also specify laocalRecord Start— the character offset of the record in the file.

typedef UINT4 GPTYPE;

const INT DocumentKeySize = 16;
const INT DocumentTypeSize = 64;
const INT DocFileNameSize = 1024;

class MDTREC {
CHR Key[DocumentKeySize];
CHR DocumentType[DocumentTypeSize];
CHR PathName[DocPathNameSize];
CHR FileName[DocFileNameSize];
GPTYPE GlobalFileStart;
GPTYPE GlobalFileEnd;
GPTYPE LocalRecordStart;
GPTYPE LocalRecordEnd;
CHR Deleted;

Figure 2: Record structure of thadt file

So, adding thd.ocalRecordStarto the character offset in the record gives the characteebfh the file,
which can simply be opened and read to find the word.

For example, assumedex.htm is 400 bytes long and maps to global indices 100001-10048én Global
index 100200 corresponds to the 200th bytadex.htm

This snippit of Perl will read and unpack entigum from an MDT:

if ($DBI{BigEndian}) {

$pack_template = '216264225521024XNNNNCxxX’;
} else {

$pack_template = 'Z16Z64725521024XVVVVCXXX’;
}

seek(MDT, 1380 * $num, 0);
read(MDT, $mdtentry, 1380);

my ($dockey, $doctype, $pathname, $filename,
$ofstart, $gfend, S$lrstart, $lrend,
$deleted) = unpack($pack template, $mdtentry);

Since the MDT can become fairly large, searching it quicldy be a problem. To speed searches,ttu

file has two auxiliary files associated with it, each contagnihe same number of records as MDT, but with
just a few fields, and sorted. The GP index (extensiudy) is sorted by global position, and the key index
(extensionmdk) is sorted by document key. Because they are relativelylsthal.mdg and.mdk files are
typically read into memory; further disk accesses needédtomead the full entries from thendt file. Figure

4 shows the structure of the key records.

For example, Figure 5 shows a directory listing of these fdesne of my databases. The document collection
contains 2926 files, so each file contains 2926 records, ofyfiegsteach (MDG), 20 bytes each (MDK) and
1380 bytes each (MDT). Finding the MDT entry correspondimg tgiven GP (a fairly common operation
during searches) requires a binary search on the in-menomy af the.mdg file, which yields thendexof

the entry in themdt file.

Field Name

Description

Key

DocumentType

PathName

FileName

GlobalFileStart
GlobalFileEnd

LocalRecordStart
LocalRecordEnd

Deleted

Key number of the document. Each document has a unique ddayyaused to uniquely identify
it, during delete requests for example.

One of the defined document types

UNIX-style pathname leading to document file. Usually abso(with a leading slash), but can b
relative (without one).

Filename of the document, without any leading path.

The range of global positions (see Introduction) referaetyt this MDT entry. The length of the
record (usually the length of the file) GlobalFileEnd— GlobalFileStart+ 1

LocalRecordStart andLocalRecordEnd indicate the limits of the record, measuring in bytes fro
the start of the file, the first byte countedlcalRecordEnd- LocalRecordStart 1 is the length
of the record in bytes, and always equa@l®balFileEnd— GlobalFileStart+ 1

A single byte value, non-zero if the document has been dkfeden the collection.

11°

m

class GPREC {

Figure 3: Fields in the Master Document Table

public:

GPTYPE GpStart;

GPTYPE GpEnd;

GPTYPE Index;
3
class KEYREC {
public:

CHR Key[DocumentKeySize];

GPTYPE Index;
3

Figure 4: Record structure of thmdg and.mdk files

-TW-TW-T-- 1 baccala baccala 43656 Jun 27 17:09 htmirfcs.md g
-TW-TW-T-- 1 baccala baccala 72760 Jun 27 17:09 htmirfcs.md k
-TW-TW-T-- 1 baccala baccala 5020440 Jun 27 17:09 htmlrfcs. mdt

Figure 5: UNIX directory listing of MDT and related files

4 |Index Files

Isearch indices are contained in one or more index files. iHgleindex file is present, its extension is simply
inx . Multiple index files are indicated usingraum file, which contains a single ASCII decimal number, the
number of index files. Each of these index files has extensixn , followed by the number of the file. For
example, if thenum file contains3, then the three index files have extensiomsl ,.inx.2 , and.inx.3

If multiple index files are present, then amy file that may be present is ignored.

Each index file is nothing more than a list of 32-bit globalifioss, stored using the byte ordering indicated
by the DBI file. Each GP points to the first byte of a word in thewnent collection, and the GPs in each
index file are sorted by the ascending alphabetical ordenesf torresponding words. The commantd -t

'd4’” can be used to conveniently print the contents of an index fte example, here’s a simple one line
document, with each GP marked, and its corresponding 24ifyéx file:

This is my web page
0 5 8 11 15

Index file: 5 8 15 0 11

Each index file is sorted independently of the others, andsaaych is performed on all the index files, with
the result sets or'ed together. This allows documents tombeinentally added to the collection, simply by
creating another index file. Of course, the more index filesetare, the less efficient the searches become.
Isearch provides an optimization function to combine npldtindex files together, using a merge sort, with
the.inx file (remember, it's ignored if there are multiple index f)l@s output. The various index files are
scanned from beginning to end, taking always the smallest séad writing it to the output. This continues
until all the index files are exhausted. Then they are delaledg with thenum file, and Isearch begins using
the newly creatednx file.

5 Search Algorithm

Isearch finds words using binary search on the index file(ejnesof the items in the search index may be
invalid, if they point to deleted data, and are thus unableetased in a comparison operation. Thus, Isearch’s
binary search algorithm has been modified to deal with theipiisy of invalid entries.

The primitive search operation MatchMid , which is passed a randlew, high] and the search term to
compare againsiatchMid , in its simplest form, takes the term at the midpoinflof, high] , compares

it to the search term, and returns equal, less than, or gréete. Since each entry in the index is a global
position, finding the corresponding term requires a binagrch on the MDT to find the file corresponding to
the GP, opening the file, seeking to the location, readingetin, then comparing it to the search term. If there
are no invalid terms present, thBtatchMid simply performs a comparison on the midpoinflofv, high]

However,MatchMid also must handle an invalid midpoint, in which case it doeedr searches away from
the midpoint, looking for the first valid term in both diremtis. In the general caddatchMid returns a range,
[midl, midr] , the endpoints being valid terms, and everything betweemtimvalid. As a special case, the
linear search may reach all the way to the origiloal or high limit without finding a valid term, in which
case it terminates and returns a special marker to indibetease.

To search for a term, we binary search on a rajtaye high] , initially the entire range of the index file.
MatchMid is called and returns a ranfeidl, midr] near the midpoint oflow, high]

Figure 6: MatchMid
Consider the following cases:

e Ifeithermidl ormidr matched equal to the search term, the binary search suctaedeve immediately
return

o If midl is greater than the search term, setltige limit of the search tonidl-1 and repeat, sinceidr
is always greater thamidl and therefore the entifenidl, midr] range is greater than the search term

e If midr is less than the search term, set the tww limit of the search tanidr+1 and repeat sinceidl
is always less thamidr and therefore the entifaidl, midr] range is less than the search term

e Otherwise, return an empty resutnidl must be either less than the search term, or have reached the
lower search limit finding nothing but invalid terms, sinaathbthe equality and greater than cases have
already been addressed foidl . Likewise,midr must be either greater than the search term, or have
reached the upper search limit, since its equality and lems tases have already been addressed. So,
midl is less than the search term (or limit reached), aitl is greater than the search term (or limit
reached), so any hits must lie in the range betwegh andmidr , which contains nothing but invalid
entries, so there are no valid results

Repeat the binary search algorithm until either the firsaet tase triggers an immediate return, or ungih

> low, in which case return an empty result. Since the iteratiepstach sdow (or high) to one more
(less) tharmidr (midl), the algorithm always makes forward progress, uowl = high and the last step
incrementdow pasthigh , or decrementkigh pastlow .

Isearch needs to find all the matching terms, so once a hiuisdfotwo additional binary searches are per-
formed to bracket the range of matching terms, using thetitmtaf the hit, and theglow, high] values

from the last iteration. First, a binary search is perforroadlow, hit] , looking for the beginning of the
matching range, then another binary search is performétpigh] , looking for the end of the matching
range.

Consider the search for the beginning of the range. iatihMid on[low, hit] to get[midl, midr] , then
apply the following cases. The upper limit of our seardih { compares equal to the search term, and we'll
maintain this as an invariant. Also, we’ll never get a congaar result greater than our search term, only less
than or equal.

e If midl matched equal to the search term,Iset to midl and repeat
e If midr matched less than the search term)metto midr+1 and repeat

e Now, midl must be either less than the search term, or have reachedwHeniit finding nothing but
invalid entries, andhidr must be equal to the search term, sihite is always valid, sonidr can’'t have
reached the search limit. Furthermore, everything betwadin andmidr is invalid, thereforemidr is
the lowest matching entry, so return it as the result of oarce

Repeat untilow = hit-1 . The algorithm will make forward progress until this poisincemidl will always
be less thahit until this point, where it may stall (ihidl = midr = hit). Compardow to the search term.
If it is equal, returrow as the result, otherwise retunit . A similar algorithm is used to find the upper limit
of the search range.

Performance. Since the algorithm reverts to linear search when confobati¢h invalid entries, its perfor-
mance depends strongly on the density of such entries. ldh& case scenario, when the entire search array
is invalid, the algorithm will require linear time to retuem empty result. On the other hand, in the degen-
erate case with no invalid entries, the algorithm acts aaditional binary search and requileg(N) time.
Clearly, this algorithm is suited only for indices with feveldted entries. Isearch’s optimization function,
which eliminates deleted entries, should be used as oftpnsssble when deleted entries may be present.

6 Fields

Fields, as mentioned above, are byte ranges within recadsmally, a search term will match anywhere
within a record, but can be limited to a specific field. Eachdfiehs an entry in the Data Field Definitions
Table (dfd file), which is a small ASCII file listing field names, an assted file number, and one or more
attributes, identified by OIDs.

Each field has a file number associated with it, and this filebrms used as an extensiam(m) to name
the field’s associated Data Field file. These files contairspai 32-bit GPs — the starting and ending GPs
of each field. The GP pairs are sorted in ascending ordewialipa binary search to determine if any GP is
contained in the field in question. A fielded search thus lsegith a normal search, which returns a list of
GPs, which are each checked against the Data Field file aactedjunless within one of its ranges.

Numeric fields are supported, and are handled speciallyntihbers are parsed by the document type handler
and stored, each one, as a GP/double pair in the Data Field file special format of Data Field file is sorted
by the double (not by the GP), allowing binary searches fonibers directly on the Data Field file without
using the standard index files at all, though the numberslaceirdexed there, in the conventional manner,
for non-fielded searches. Dates, for example, are convertedmbers and stored in this fashion.

7 Parsing and Scoring

When a search query is presented to Isearch, it first scanguny into tokens. Tokens are single words,
separated by whitespace, with several special charadeesees that parse into unique tokens — the two
parenthesist&, &', and|| . Double-quoted strings are grouped as single tokens witiegard for whitespace
or special characters, then the double quotes are strippay a

Next, the query is parsed according to one of several gras(standard, and, infix, and RPN) selected by
command line options. In a standard query, every token &rdegl as a search term, with the results logically
or-ed together. Amndquery is almost the same, but the result sets from each tertogically and-ed. Infix
notation is converted into RPN, and both use a set of operag@onstruct more complex queriesANDor &&
(logical and),ORor || (logical or), ANDNOTor & (logical andnot)NEAR and the parenthesis for grouping. |
hope logicabndandor are self-explanatory. Logicahdnotis anandwith the following search term inverted,
but since inverted terms tend to generate enormous ressiltisgicalnotisn’t provided as a primitiveNEAR
matches its two arguments within 50 characters of each.other

Each search term within the query is parsed [ik&(*)?(/.+)?(:-?[0-9]+)? , 1.e, the search term it-
self, followed by an optional asterisk to indicate a wildtaiollowed by an optional slash and field name
to restrict the search, followed by an optional colon and exoweight (possibly negative). For example,
ethernet*/title:3 searches for any word beginning withernet in thetitle field, weighing this term
three times more than normal. If double quotes were usedtine @hrase can be submitted as a search term.

For each search term, the search algorithm described aboged to find a range of index entries that match

the search term in each index file. Each GP in the range(dds pmssibly rejected if not present in a required
field (which would require the GP to searched for in the prdpata Field file), and looked up in the MDT
to find its matching document. The hit count for that documgiricremented. There is no need to open the
document files on disk at this point, but each index entrygeig a binary search on the MDT, and possibly
the Data Field file, if a field was specified. This is the moseticonsuming part of a search.

Next, the hit counts are normalized by summing the squartsediit counts for each document, and dividing
through by the square root of the sum. The score is multifdyethe weighting factor associated with this
term in the search query, default 1. This produces a set afrdent scores for a single term.

. hit
scorg, = weight L

V/ 3 hits?

The full search query is now constructed from the weighednatized result sets from each term. A logical
andproduces a result set containing only documents that apgeaarboth of its input result sets; the scores
from the two input sets are added together to get the scordsearutput result set. A logicakr produces the
union of documents in its input result sets; again the scaresadded together for any document appearing in
both sets. The logicalndnotremoves from the result set of its first argument any docusiarthe result set

of it’s second argument; the scores of the remaining doctsreee unchanged. FBIEAR the scores from the
left-hand result set are discarded; the scores from thé-highd result set are used, multiplied by the number
of hits within 50 characters of each other.

Finally, having produced a result set for the entire seatdTryy the document list is sorted into descending
order of scores, the final scores are normalized so that ¢ieesi score is 100, and the list is presented to the
user.

