Connected: An Internet Encyclopedia
1.1 Motivation

Up: Connected: An Internet Encyclopedia
Up: Requests For Comments
Up: RFC 793
Up: 1. INTRODUCTION
Prev: 1. INTRODUCTION
Next: 1.2 Scope

1.1 Motivation

1.1 Motivation

Computer communication systems are playing an increasingly important role in military, government, and civilian environments. This document focuses its attention primarily on military computer communication requirements, especially robustness in the presence of communication unreliability and availability in the presence of congestion, but many of these problems are found in the civilian and government sector as well.

As strategic and tactical computer communication networks are developed and deployed, it is essential to provide means of interconnecting them and to provide standard interprocess communication protocols which can support a broad range of applications. In anticipation of the need for such standards, the Deputy Undersecretary of Defense for Research and Engineering has declared the Transmission Control Protocol (TCP) described herein to be a basis for DoD-wide inter-process communication protocol standardization.

TCP is a connection-oriented, end-to-end reliable protocol designed to fit into a layered hierarchy of protocols which support multi-network applications. The TCP provides for reliable inter-process communication between pairs of processes in host computers attached to distinct but interconnected computer communication networks. Very few assumptions are made as to the reliability of the communication protocols below the TCP layer. TCP assumes it can obtain a simple, potentially unreliable datagram service from the lower level protocols. In principle, the TCP should be able to operate above a wide spectrum of communication systems ranging from hard-wired connections to packet-switched or circuit-switched networks. TCP is based on concepts first described by Cerf and Kahn in [1]. The TCP fits into a layered protocol architecture just above a basic Internet Protocol [2] which provides a way for the TCP to send and receive variable-length segments of information enclosed in internet datagram "envelopes". The internet datagram provides a means for addressing source and destination TCPs in different networks. The internet protocol also deals with any fragmentation or reassembly of the TCP segments required to achieve transport and delivery through multiple networks and interconnecting gateways. The internet protocol also carries information on the precedence, security classification and compartmentation of the TCP segments, so this information can be communicated end-to-end across multiple networks.

                           Protocol Layering

                        +---------------------+
                        |     higher-level    |
                        +---------------------+
                        |        TCP          |
                        +---------------------+
                        |  internet protocol  |
                        +---------------------+
                        |communication network|
                        +---------------------+

                                Figure 1

Much of this document is written in the context of TCP implementations which are co-resident with higher level protocols in the host computer. Some computer systems will be connected to networks via front-end computers which house the TCP and internet protocol layers, as well as network specific software. The TCP specification describes an interface to the higher level protocols which appears to be implementable even for the front-end case, as long as a suitable host-to-front end protocol is implemented.


Next: 1.2 Scope

Connected: An Internet Encyclopedia
1.1 Motivation