Connected: An Internet Encyclopedia
2.2. Use of external routing information

Up: Connected: An Internet Encyclopedia
Up: Requests For Comments
Up: RFC 1583
Up: 2. The Topological Database
Prev: 2.1. The shortest-path tree
Next: 2.3. Equal-cost multipath

2.2. Use of external routing information

2.2. Use of external routing information

After the tree is created the external routing information is examined. This external routing information may originate from another routing protocol such as EGP, or be statically configured (static routes). Default routes can also be included as part of the Autonomous System's external routing information.

                                RT6(origin)
                    RT5 o------------o-----------o Ib
                       /|\    6      |\     7
                     8/8|8\          | \
                     /  |  \         |  \
                    o   |   o        |   \7
                   N12  o  N14       |    \
                       N13        2  |     \
                            N4 o-----o RT3  \
                                    /        \    5
                                  1/     RT10 o-------o Ia
                                  /           |\
                       RT4 o-----o N3        3| \1
                                /|            |  \ N6     RT7
                               / |         N8 o   o---------o
                              /  |            |   |        /|
                         RT2 o   o RT1        |   |      2/ |9
                            /    |            |   |RT8   /  |
                           /3    |3      RT11 o   o     o   o
                          /      |            |   |    N12 N15
                      N2 o       o N1        1|   |4
                                              |   |
                                           N9 o   o N7
                                             /|
                                            / |
                        N11      RT9       /  |RT12
                         o--------o-------o   o--------o H1
                             3                |   10
                                              |2
                                              |
                                              o N10

                     Figure 5: The SPF tree for Router RT6

              Edges that are not marked with a cost have a cost of
              of zero (these are network-to-router links). Routes
              to networks N12-N15 are external information that is
                         considered in Section 2.2

                   Destination   Next  Hop   Distance
                   __________________________________
                   N1            RT3         10
                   N2            RT3         10
                   N3            RT3         7
                   N4            RT3         8
                   Ib            *           7
                   Ia            RT10        12
                   N6            RT10        8
                   N7            RT10        12
                   N8            RT10        10
                   N9            RT10        11
                   N10           RT10        13
                   N11           RT10        14
                   H1            RT10        21
                   __________________________________
                   RT5           RT5         6
                   RT7           RT10        8

    Table 2: The portion of Router RT6's routing table listing local
                             destinations.

External routing information is flooded unaltered throughout the AS. In our example, all the routers in the Autonomous System know that Router RT7 has two external routes, with metrics 2 and 9.

OSPF supports two types of external metrics. Type 1 external metrics are equivalent to the link state metric. Type 2 external metrics are greater than the cost of any path internal to the AS. Use of Type 2 external metrics assumes that routing between AS'es is the major cost of routing a packet, and eliminates the need for conversion of external costs to internal link state metrics.

As an example of Type 1 external metric processing, suppose that the Routers RT7 and RT5 in Figure 2 are advertising Type 1 external metrics. For each external route, the distance from Router RT6 is calculated as the sum of the external route's cost and the distance from Router RT6 to the advertising router. For every external destination, the router advertising the shortest route is discovered, and the next hop to the advertising router becomes the next hop to the destination.

Both Router RT5 and RT7 are advertising an external route to destination Network N12. Router RT7 is preferred since it is advertising N12 at a distance of 10 (8+2) to Router RT6, which is better than Router RT5's 14 (6+8). Table 3 shows the entries that are added to the routing table when external routes are examined:

                         Destination   Next  Hop   Distance
                         __________________________________
                         N12           RT10        10
                         N13           RT5         14
                         N14           RT5         14
                         N15           RT10        17

                 Table 3: The portion of Router RT6's routing table
                           listing external destinations.

Processing of Type 2 external metrics is simpler. The AS boundary router advertising the smallest external metric is chosen, regardless of the internal distance to the AS boundary router. Suppose in our example both Router RT5 and Router RT7 were advertising Type 2 external routes. Then all traffic destined for Network N12 would be forwarded to Router RT7, since 2 < 8. When several equal-cost Type 2 routes exist, the internal distance to the advertising routers is used to break the tie.

Both Type 1 and Type 2 external metrics can be present in the AS at the same time. In that event, Type 1 external metrics always take precedence.

This section has assumed that packets destined for external destinations are always routed through the advertising AS boundary router. This is not always desirable. For example, suppose in Figure 2 there is an additional router attached to Network N6, called Router RTX. Suppose further that RTX does not participate in OSPF routing, but does exchange EGP information with the AS boundary router RT7. Then, Router RT7 would end up advertising OSPF external routes for all destinations that should be routed to RTX. An extra hop will sometimes be introduced if packets for these destinations need always be routed first to Router RT7 (the advertising router).

To deal with this situation, the OSPF protocol allows an AS boundary router to specify a "forwarding address" in its external advertisements. In the above example, Router RT7 would specify RTX's IP address as the "forwarding address" for all those destinations whose packets should be routed directly to RTX.

The "forwarding address" has one other application. It enables routers in the Autonomous System's interior to function as "route servers". For example, in Figure 2 the router RT6 could become a route server, gaining external routing information through a combination of static configuration and external routing protocols. RT6 would then start advertising itself as an AS boundary router, and would originate a collection of OSPF external advertisements. In each external advertisement, Router RT6 would specify the correct Autonomous System exit point to use for the destination through appropriate setting of the advertisement's "forwarding address" field.


Next: 2.3. Equal-cost multipath

Connected: An Internet Encyclopedia
2.2. Use of external routing information