Connected: An Internet Encyclopedia
3.4. A sample area configuration

Up: Connected: An Internet Encyclopedia
Up: Requests For Comments
Up: RFC 1583
Up: 3. Splitting the AS into Areas
Prev: 3.3. Classification of routers
Next: 3.5. IP subnetting support

3.4. A sample area configuration

3.4. A sample area configuration

Figure 6 shows a sample area configuration. The first area consists of networks N1-N4, along with their attached routers RT1-RT4. The second area consists of networks N6-N8, along with their attached routers RT7, RT8, RT10 and RT11. The third area consists of networks N9-N11 and Host H1, along with their attached routers RT9, RT11 and RT12. The third area has been configured so that networks N9-N11 and Host H1 will all be grouped into a single route, when advertised external to the area (see Section 3.5 for more details).

In Figure 6, Routers RT1, RT2, RT5, RT6, RT8, RT9 and RT12 are internal routers. Routers RT3, RT4, RT7, RT10 and RT11 are area border routers. Finally, as before, Routers RT5 and RT7 are AS boundary routers.

Figure 7 shows the resulting topological database for the Area 1. The figure completely describes that area's intra-area routing. It also shows the complete view of the internet for the two internal routers RT1 and RT2. It is the job of the area border routers, RT3 and RT4, to advertise into Area 1 the distances to all destinations external to the area. These are indicated in Figure 7 by the dashed stub routes. Also, RT3 and RT4 must advertise into Area 1 the location of the AS boundary routers RT5 and RT7. Finally, external advertisements from RT5 and RT7 are flooded throughout the entire AS, and in particular throughout Area 1. These advertisements are included in Area 1's database, and yield routes to Networks N12-N15.

Routers RT3 and RT4 must also summarize Area 1's topology for distribution to the backbone. Their backbone advertisements are shown in Table 4. These summaries show which networks are contained in Area 1 (i.e., Networks N1-N4), and the distance to these networks from the routers RT3 and RT4 respectively.

             ...........................
             .   +                     .
             .   | 3+---+              .      N12      N14
             . N1|--|RT1|\ 1           .        \ N13 /
             .   |  +---+ \            .        8\ |8/8
             .   +         \ ____      .          \|/
             .              /    \   1+---+8    8+---+6
             .             *  N3  *---|RT4|------|RT5|--------+
             .              \____/    +---+      +---+        |
             .    +         /      \   .           |7         |
             .    | 3+---+ /        \  .           |          |
             .  N2|--|RT2|/1        1\ .           |6         |
             .    |  +---+            +---+8    6+---+        |
             .    +                   |RT3|------|RT6|        |
             .                        +---+      +---+        |
             .                      2/ .         Ia|7         |
             .                      /  .           |          |
             .             +---------+ .           |          |
             .Area 1           N4      .           |          |
             ...........................           |          |
          ..........................               |          |
          .            N11         .               |          |
          .        +---------+     .               |          |
          .             |          .               |          |    N12
          .             |3         .             Ib|5         |6 2/
          .           +---+        .             +----+     +---+/
          .           |RT9|        .    .........|RT10|.....|RT7|---N15.
          .           +---+        .    .        +----+     +---+ 9    .
          .             |1         .    .    +  /3    1\      |1       .
          .            _|__        .    .    | /        \   __|_       .
          .           /    \      1+----+2   |/          \ /    \      .
          .          *  N9  *------|RT11|----|            *  N6  *     .
          .           \____/       +----+    |             \____/      .
          .             |          .    .    |                |        .
          .             |1         .    .    +                |1       .
          .  +--+   10+----+       .    .   N8              +---+      .
          .  |H1|-----|RT12|       .    .                   |RT8|      .
          .  +--+SLIP +----+       .    .                   +---+      .
          .             |2         .    .                     |4       .
          .             |          .    .                     |        .
          .        +---------+     .    .                 +--------+   .
          .            N10         .    .                     N7       .
          .                        .    .Area 2                        .
          .Area 3                  .    ................................
          ..........................

                    Figure 6: A sample OSPF area configuration

                     Network   RT3 adv.   RT4 adv.
                     _____________________________
                     N1        4          4
                     N2        4          4
                     N3        1          1
                     N4        2          3

              Table 4: Networks advertised to the backbone
                        by Routers RT3 and RT4.

The topological database for the backbone is shown in Figure 8. The set of routers pictured are the backbone routers. Router RT11 is a backbone router because it belongs to two areas. In order to make the backbone connected, a virtual link has been configured between Routers R10 and R11.

Again, Routers RT3, RT4, RT7, RT10 and RT11 are area border routers. As Routers RT3 and RT4 did above, they have condensed the routing information of their attached areas for distribution via the backbone; these are the dashed stubs that appear in Figure 8. Remember that the third area has been configured to condense Networks N9-N11 and Host H1 into a single route. This yields a single dashed line for networks N9-N11 and Host H1 in Figure 8. Routers RT5 and RT7 are AS boundary routers; their externally derived information also appears on the graph in Figure 8 as stubs.

The backbone enables the exchange of summary information between area border routers. Every area border router hears the area summaries from all other area border routers. It then forms a picture of the distance to all networks outside of its area by examining the collected advertisements, and adding in the backbone distance to each advertising router.

Again using Routers RT3 and RT4 as an example, the procedure goes as follows: They first calculate the SPF tree for the backbone. This gives the distances to all other area border routers. Also noted are the distances to networks (Ia and Ib) and AS boundary routers (RT5 and RT7) that belong to the backbone. This calculation is shown in Table 5.

Next, by looking at the area summaries from these area border routers, RT3 and RT4 can determine the distance to all networks outside their area. These distances are then advertised internally to the area by RT3 and RT4. The advertisements that Router RT3 and RT4 will make into Area 1 are shown in Table 6.

                               **FROM**

                          |RT|RT|RT|RT|RT|RT|
                          |1 |2 |3 |4 |5 |7 |N3|
                       ----- -------------------
                       RT1|  |  |  |  |  |  |0 |
                       RT2|  |  |  |  |  |  |0 |
                       RT3|  |  |  |  |  |  |0 |
                   *   RT4|  |  |  |  |  |  |0 |
                   *   RT5|  |  |14|8 |  |  |  |
                   T   RT7|  |  |20|14|  |  |  |
                   O    N1|3 |  |  |  |  |  |  |
                   *    N2|  |3 |  |  |  |  |  |
                   *    N3|1 |1 |1 |1 |  |  |  |
                        N4|  |  |2 |  |  |  |  |
                     Ia,Ib|  |  |15|22|  |  |  |
                        N6|  |  |16|15|  |  |  |
                        N7|  |  |20|19|  |  |  |
                        N8|  |  |18|18|  |  |  |
                 N9-N11,H1|  |  |19|16|  |  |  |
                       N12|  |  |  |  |8 |2 |  |
                       N13|  |  |  |  |8 |  |  |
                       N14|  |  |  |  |8 |  |  |
                       N15|  |  |  |  |  |9 |  |

                      Figure 7: Area 1's Database.

              Networks and routers are represented by vertices.
              An edge of cost X connects Vertex A to Vertex B iff
              the intersection of Column A and Row B is marked
                               with an X.

                                  **FROM**

                            |RT|RT|RT|RT|RT|RT|RT
                            |3 |4 |5 |6 |7 |10|11|
                         ------------------------
                         RT3|  |  |  |6 |  |  |  |
                         RT4|  |  |8 |  |  |  |  |
                         RT5|  |8 |  |6 |6 |  |  |
                         RT6|8 |  |7 |  |  |5 |  |
                         RT7|  |  |6 |  |  |  |  |
                     *  RT10|  |  |  |7 |  |  |2 |
                     *  RT11|  |  |  |  |  |3 |  |
                     T    N1|4 |4 |  |  |  |  |  |
                     O    N2|4 |4 |  |  |  |  |  |
                     *    N3|1 |1 |  |  |  |  |  |
                     *    N4|2 |3 |  |  |  |  |  |
                          Ia|  |  |  |  |  |5 |  |
                          Ib|  |  |  |7 |  |  |  |
                          N6|  |  |  |  |1 |1 |3 |
                          N7|  |  |  |  |5 |5 |7 |
                          N8|  |  |  |  |4 |3 |2 |
                   N9-N11,H1|  |  |  |  |  |  |1 |
                         N12|  |  |8 |  |2 |  |  |
                         N13|  |  |8 |  |  |  |  |
                         N14|  |  |8 |  |  |  |  |
                         N15|  |  |  |  |9 |  |  |

                     Figure 8: The backbone's database.

              Networks and routers are represented by vertices.
              An edge of cost X connects Vertex A to Vertex B iff
              the intersection of Column A and Row B is marked
                                 with an X.

                 Area  border   dist  from   dist  from
                 router         RT3          RT4
                 ______________________________________
                 to  RT3        *            21
                 to  RT4        22           *
                 to  RT7        20           14
                 to  RT10       15           22
                 to  RT11       18           25
                 ______________________________________
                 to  Ia         20           27
                 to  Ib         15           22
                 ______________________________________
                 to  RT5        14           8
                 to  RT7        20           14

                 Table 5: Backbone distances calculated
                        by Routers RT3 and RT4.

Note that Table 6 assumes that an area range has been configured for the backbone which groups Ia and Ib into a single advertisement.

The information imported into Area 1 by Routers RT3 and RT4 enables an internal router, such as RT1, to choose an area border router intelligently. Router RT1 would use RT4 for traffic to Network N6, RT3 for traffic to Network N10, and would load share between the two for traffic to Network N8.

                   Destination   RT3 adv.   RT4 adv.
                   _________________________________
                   Ia,Ib         15         22
                   N6            16         15
                   N7            20         19
                   N8            18         18
                   N9-N11,H1     19         26
                   _________________________________
                   RT5           14         8
                   RT7           20         14

              Table 6: Destinations advertised into Area 1
                        by Routers RT3 and RT4.

Router RT1 can also determine in this manner the shortest path to the AS boundary routers RT5 and RT7. Then, by looking at RT5 and RT7's external advertisements, Router RT1 can decide between RT5 or RT7 when sending to a destination in another Autonomous System (one of the networks N12-N15).

Note that a failure of the line between Routers RT6 and RT10 will cause the backbone to become disconnected. Configuring a virtual link between Routers RT7 and RT10 will give the backbone more connectivity and more resistance to such failures. Also, a virtual link between RT7 and RT10 would allow a much shorter path between the third area (containing N9) and the router RT7, which is advertising a good route to external network N12.


Next: 3.5. IP subnetting support

Connected: An Internet Encyclopedia
3.4. A sample area configuration