Connected: An Internet Encyclopedia
3.4. TRANSMISSION MODES

Up: Connected: An Internet Encyclopedia
Up: Requests For Comments
Up: RFC 959
Up: 3. DATA TRANSFER FUNCTIONS
Prev: 3.3. DATA CONNECTION MANAGEMENT
Next: 3.5. ERROR RECOVERY AND RESTART

3.4. TRANSMISSION MODES

3.4. TRANSMISSION MODES

The next consideration in transferring data is choosing the appropriate transmission mode. There are three modes: one which formats the data and allows for restart procedures; one which also compresses the data for efficient transfer; and one which passes the data with little or no processing. In this last case the mode interacts with the structure attribute to determine the type of processing. In the compressed mode, the representation type determines the filler byte.

All data transfers must be completed with an end-of-file (EOF) which may be explicitly stated or implied by the closing of the data connection. For files with record structure, all the end-of-record markers (EOR) are explicit, including the final one. For files transmitted in page structure a "last-page" page type is used.

NOTE: In the rest of this section, byte means "transfer byte" except where explicitly stated otherwise.

For the purpose of standardized transfer, the sending host will translate its internal end of line or end of record denotation into the representation prescribed by the transfer mode and file structure, and the receiving host will perform the inverse translation to its internal denotation. An IBM Mainframe record count field may not be recognized at another host, so the end-of-record information may be transferred as a two byte control code in Stream mode or as a flagged bit in a Block or Compressed mode descriptor. End-of-line in an ASCII or EBCDIC file with no record structure should be indicated by <CRLF> or <NL>, respectively. Since these transformations imply extra work for some systems, identical systems transferring non-record structured text files might wish to use a binary representation and stream mode for the transfer.

The following transmission modes are defined in FTP:

3.4.1. STREAM MODE

The data is transmitted as a stream of bytes. There is no restriction on the representation type used; record structures are allowed.

In a record structured file EOR and EOF will each be indicated by a two-byte control code. The first byte of the control code will be all ones, the escape character. The second byte will have the low order bit on and zeros elsewhere for EOR and the second low order bit on for EOF; that is, the byte will have value 1 for EOR and value 2 for EOF. EOR and EOF may be indicated together on the last byte transmitted by turning both low order bits on (i.e., the value 3). If a byte of all ones was intended to be sent as data, it should be repeated in the second byte of the control code.

If the structure is a file structure, the EOF is indicated by the sending host closing the data connection and all bytes are data bytes.

3.4.2. BLOCK MODE

The file is transmitted as a series of data blocks preceded by one or more header bytes. The header bytes contain a count field, and descriptor code. The count field indicates the total length of the data block in bytes, thus marking the beginning of the next data block (there are no filler bits). The descriptor code defines: last block in the file (EOF) last block in the record (EOR), restart marker (see the Section on Error Recovery and Restart) or suspect data (i.e., the data being transferred is suspected of errors and is not reliable). This last code is NOT intended for error control within FTP. It is motivated by the desire of sites exchanging certain types of data (e.g., seismic or weather data) to send and receive all the data despite local errors (such as "magnetic tape read errors"), but to indicate in the transmission that certain portions are suspect). Record structures are allowed in this mode, and any representation type may be used.

The header consists of the three bytes. Of the 24 bits of header information, the 16 low order bits shall represent byte count, and the 8 high order bits shall represent descriptor codes as shown below.

         Block Header

            +----------------+----------------+----------------+
            | Descriptor     |    Byte Count                   |
            |         8 bits |                      16 bits    |
            +----------------+----------------+----------------+

The descriptor codes are indicated by bit flags in the descriptor byte. Four codes have been assigned, where each code number is the decimal value of the corresponding bit in the byte.

            Code     Meaning
            
             128     End of data block is EOR
              64     End of data block is EOF
              32     Suspected errors in data block
              16     Data block is a restart marker

With this encoding, more than one descriptor coded condition may exist for a particular block. As many bits as necessary may be flagged.

The restart marker is embedded in the data stream as an integral number of 8-bit bytes representing printable characters in the language being used over the control connection (e.g., default--NVT-ASCII). <SP> (Space, in the appropriate language) must not be used WITHIN a restart marker.

For example, to transmit a six-character marker, the following would be sent:

            +--------+--------+--------+
            |Descrptr|  Byte count     |
            |code= 16|             = 6 |
            +--------+--------+--------+

            +--------+--------+--------+
            | Marker | Marker | Marker |
            | 8 bits | 8 bits | 8 bits |
            +--------+--------+--------+

            +--------+--------+--------+
            | Marker | Marker | Marker |
            | 8 bits | 8 bits | 8 bits |
            +--------+--------+--------+

3.4.3. COMPRESSED MODE

There are three kinds of information to be sent: regular data, sent in a byte string; compressed data, consisting of replications or filler; and control information, sent in a two-byte escape sequence. If n>0 bytes (up to 127) of regular data are sent, these n bytes are preceded by a byte with the left-most bit set to 0 and the right-most 7 bits containing the number n.

         Byte string:

             1       7                8                     8
            +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+
            |0|       n     | |    d(1)       | ... |      d(n)     |
            +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+
                                          ^             ^
                                          |---n bytes---|
                                              of data

            String of n data bytes d(1),..., d(n)
            Count n must be positive.

To compress a string of n replications of the data byte d, the following 2 bytes are sent:

         Replicated Byte:

              2       6               8
            +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
            |1 0|     n     | |       d       |
            +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

A string of n filler bytes can be compressed into a single byte, where the filler byte varies with the representation type. If the type is ASCII or EBCDIC the filler byte is <SP> (Space, ASCII code 32, EBCDIC code 64). If the type is Image or Local byte the filler is a zero byte.

         Filler String:

              2       6
            +-+-+-+-+-+-+-+-+
            |1 1|     n     |
            +-+-+-+-+-+-+-+-+

The escape sequence is a double byte, the first of which is the escape byte (all zeros) and the second of which contains descriptor codes as defined in Block mode. The descriptor codes have the same meaning as in Block mode and apply to the succeeding string of bytes.

Compressed mode is useful for obtaining increased bandwidth on very large network transmissions at a little extra CPU cost. It can be most effectively used to reduce the size of printer files such as those generated by RJE hosts.


Next: 3.5. ERROR RECOVERY AND RESTART

Connected: An Internet Encyclopedia
3.4. TRANSMISSION MODES